Системы питания двигателя

Клапаны ТНВД

В ТНВД с рядным расположением плунжерных пар применяются нагнетательные клапана объемного течения и ограничения обратного течения, а также клапана постоянного давления.

Клапана обратного течения применяются для демпфирования волн обратного давления топлива, возникающих при закрытии распылителя форсунки, что уменьшает износ распылителя и подвпрыски топлива в цилиндры двигателя. Клапан  устанавливается как дополнительный над обычным клапаном перед топливопроводом высокого давления, идущим к форсунке.

Клапан состоит из головки с запорной конической фаской, разгрузочного пояска 4 и хвос­товика с прорезями для прохода топлива. Сверху на клапан установлена пружина 3, которая прижимает его к седлу. При подаче топлива разгрузочный поясок вместе с конусом клапана приподнимается над направляющей втулкой и топливо под давлением поступает к форсунке. При закрытии основного клапана клапан обратного течения перекрывает доступ обратных волн топлива.

Клапана постоянного течения применяются на ТНВД с давлением впрыска более 800 кг/см2, для уменьшения кавитации. При подаче топлива через нагнетательный клапан в конце хода нагнетания шариковый обратный клапан под действием обратных волн давления топлива открывается и система топливоподачи действует как нагнетательный клапан с перепускным дросселем. При уменьшении давления клапан закрывается, при этом в магистрали сохраняется постоянное давление.

Перемещение плунжера во втулке с момента закрытия впускного отверстия до момента открытия вы­пускного отверстия  называется активным  ходом  плунжера, который в основном и определяет количество подаваемого топлива за цикл работы топливной секции.

Изменение количества топлива, подаваемого секцией за один цикл, происходит в результате поворота плунжера зубчатой рейкой 5. При различных углах поворота плунжера благодаря винтовой кромке смещаются моменты открытия выпускного отверстия. При этом, чем позднее открывается выпускное отверстие, тем большее количество топлива может быть подано к форсункам.

На рисунке показаны следующие положения винтовой кромки плунжера за цикл работы топливной секции:

  • положение а – нулевая подача топлива. Плунжер 3 повернут так, что его продольный паз расположен против выпускного отверстия, в результате чего при перемещении плунжера вверх топливо вытесняется в сливной канал, подача топлива прекращается и двигатель останавливается
  • положение  б – промежуточная подача, так как при повороте плунжера 3 по часовой стрелке объем вытесненного топлива уменьшается так как выпускное отверстие открывается раньше
  • положение в – максимальная подача топлива и наибольший активный ход плунжера 3. В этом случае расстояние от винтовой кромки 4 плунжера до выпускного отверстия будет наибольшим

Основные виды технической реализации

Развитие шло двумя путями – от механических систем к электронным и от впрыска в ту зону, где ранее располагался карбюратор к индивидуальной подаче бензина как можно ближе к месту его горения.

 Централизованный впрыск единственной форсункой (моновпрыск)

Версия впрыска в самое начало впускного коллектора, где поток ещё был общим для всех цилиндров двигателя, не была первой исторически, но с неё началось массовое серийное внедрение технологии.

Модуль центрального впрыска содержит:

  • форсунку с электромагнитным клапаном;
  • топливный насос, создающий относительно небольшое давление;
  • регулятор давления с диафрагмой, клапаном и обратной магистралью слива;
  • электронный блок управления и датчики.

Система существенно упрощала жизнь водителям за счёт стабильной работы и автоматического управления. Двигатели хорошо запускались, обладали более высокими характеристиками по расходу и токсичности по сравнению с карбюраторными. Но цена выросла, а проблемы с конденсацией топлива в коллекторе остались.

Распределение форсунок по цилиндрам

Значительно лучше смесеобразование происходило при выделении отдельной форсунки каждому цилиндру. Стало возможным организовывать впрыск индивидуально, перед самым началом впуска, что исключало конденсацию. В остальном структура системы не поменялась, эволюционировал лишь её технический уровень. Совершенствовались датчики, быстродействие процессора в блоке управления, алгоритмы программы. В основном прогресс был направлен на экологию и обслуживание появившихся каталитических нейтрализаторов на выпуске.

Механическое и электронное управление

Первые системы впрыска топлива использовали для управления механику и гидравлику. Воздушные расходомеры представляли собой пластину в потоке, отклонение которой меняло управляющее давление. Далее сложный механизм дозатора-распределителя отмерял нужное количество топлива в зависимости от положения дросселя и прочих входных параметров. Всё это работало недостаточно точно и эффективно.

Качественный скачок произошёл с появлением структуры, представляющей из себя классический компьютер в блоке управления, который собирал электрические сигналы от датчиков, оцифровывал их и подавал команды на исполнительные устройства. Входной информацией стали:

  • массовый расход воздуха или абсолютное давление во впускном коллекторе;
  • температуры воздуха и двигателя;
  • скорость и фаза вращения коленчатого и распределительных валов;
  • положение дроссельной заслонки;
  • наличие детонационных процессов;
  • полнота сгорания топлива по кислородному датчику на выхлопе.

Чем больше учитывалось информации и чем выше скорость её обработки, тем точнее регулировались режимы двигателя. Распределённый впрыск с электронным управлением и катализатором широко применяется и в настоящее время.

Прямой (непосредственный) впрыск

Идея непосредственного впрыска бензина в камеру сгорания существовала всегда, но с практической реализацией имелись сложности. Для впрыска в конце такта сжатия и правильного направления тонко распылённого бензина требовалось высокое давление и качественные форсунки. Усложнился и подорожал насос, теперь его функции распределились между подкачкой из бака и созданием давления порядка 100 атмосфер на входе форсунок. Возникли трудно решаемые проблемы с надёжностью и долговечностью дорогих приборов системы впрыска.

Дополнительно стали возникать вопросы, подобные тем, что ограничивают развитие дизельной техники. Пришлось бороться с детонацией, жёсткой работой, разрабатывать быстродействующие форсунки высокого давления, способные разделить впрыск на фазы в течении одного такта цилиндра. Из-за необходимости обязательного использования системы EGR, направляющей часть выхлопных газов обратно во впускной коллектор, появились сложности с очисткой коллектора и клапанов.

Тем не менее, использование прямого впрыска, особенно комбинированного, с дополнительными форсунками в коллекторе, в сочетании с турбонаддувом позволило существенно повысить экономичность двигателей. Заплатив за это сложностью и недолговечностью. К тому же новым моторам требовалось очень качественное горючее, что сразу заметили водители, покупающие автомобили с прямым впрыском на вторичном рынке и эксплуатирующие их вдали от брендовых заправок с гарантированно подходящим бензином.

Топливная рампа(fuel rail)

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускной трубе.
Топливо заполняет топливную рампу и равномерно распределяется на все форсунки. На топливной рампе кроме форсунок располагаются регулятор давления топлива и штуцер контроля давления в топливной системе. Размеры и конструктивное исполнение рампы устраняют локальные пульсации давления топлива вследствие резонансов при работе форсунок.

1 – шланг от топливного фильтра тонкой очистки; 2 – топливная рампа; 3 – форсунка; 4 – регулятор давления; 5 – шланг слива топлива

Топливная рампа, представляющая собой пустотелую трубчатую деталь с отверстиями для установки форсунок, регулятора давления топлива и наконечника топливопровода высокого давления, служит для подачи топлива к форсункам и закреплена на впускной трубе. Форсунки, регулятор давления и наконечник топливопровода уплотнены в гнездах резиновыми кольцами. Рампа с форсунками в сборе вставлена хвостовиками форсунок в отверстия впускной трубы и закреплена двумя болтами.
Ещё раз взглянем на устройство рампы, хотя, как мне кажется, её устройство понятно.

1 – рампа форсунок; 2 – регулятор давления; 3 – вакуумный шланг; 4 – впускная труба; 5 – форсунка; 6 – защелка форсунки

ТСД бензинового агрегата

Сегодня большая часть автомобилей оснащены инжекторными системами. Однако встречаются ещё и карбюраторные автомобили. Рассмотрим, как оснащены ТСД обеих систем подробнее.

ТСД на карбюраторе имеет свою уникальную принципиальную схему. Составляющими элементами в ней выступают топливный резервуар, насос, коммуникации, фильтры. Одной из особенностей карбюраторной системы можно назвать то, что здесь используется воздушный фильтр.

Топливный резервуар способен вмещать от 40 до 80 литров горючего (это в среднем). Устанавливается в большинстве случаев сзади автомобиля, наполняется жидкостью через горловину. Залитый в резервуар бензин обязан проходить фильтрацию. С этой целью устанавливается сетчатый фильтр, задерживающий крупные частички мусора. Кроме того, в баке предусмотрен ДУТ – датчик уровня бензина. Его данные отображаются на приборной панели автомобиля.

Топливный насос

Насос – важное звено, как в карбюраторных, так и в инжекторных ТСД. Только в первом случае он, как правило, устанавливается не внутри резервуара, а снаружи

Именно насос поддерживает нужное рабочее давление в системе, оснащается фильтрами и т.д. На инжекторных системах устанавливается электронный насос, на карбюраторных – механический.

На инжекторных ТСД принято ставить не один, а два фильтра. Один встраивается непосредственно внутрь топливного насоса. Это сетка, задерживающая крупные частички мусора. Другой фильтр называется тонким, его ставят на участке топливных коммуникаций, как правило, под порогом или под капотом.

Нынешние фильтры оснащены также специальным клапаном. Он регулирует давление в системе, путём слива остаточного бензина по обратному каналу назад в резервуар.

Топливные коммуникации состоят из шлангов и трубок. Они должны быть невосприимчивы к бензину, иначе он их просто проест. Топливо постоянно циркулирует по этим трубкам, создаётся постоянное давление.

Воздушный фильтр

Как и говорилось выше, одним из значимых звеньев карбюраторной ТСД является воздушный фильтр. Он предназначен для очистки воздуха, поступающего в карбюратор. Если в воздухе будет много пыли, то мелкие частички осядут на смазанных маслом деталях, и это приведёт к быстрому износу. Принято делить воздушные фильтры на сухие и масляные. Последние отличаются тем, что оснащаются помимо корпуса с фильтром масляной ванной и воздухозаборником. Сухой воздушный фильтр – просто картоновый корпус и воздухозаборник.

Карбюратор – сложное устройство, прибор. Здесь происходит приготовление горючей смеси ТВС. Оно передаётся дальше в цилиндры двигателя. Инжекторные ТСД карбюраторов не имеют, топливо распыляется форсунками в проходящий поток воздуха.

Таким образом, питание ТСД выглядит на карбюраторном двигателе так.

Схема питания карбюраторного ДВС

Бензин в конкретном случае, качаемый насосом, поступает в карбюратор через фильтры. Топливо подаётся из резервуара.

Инжекторная ТСД вместо карбюратора оснащена форсунками. Здесь много различных датчиков, а управление ими выполняет БУ. Однозначно в инжекторной системе питания изменён процесс получения ТВС. Изначально сам насос уже подаёт горючее под сильным давлением. Затем через рейку, на которой установлены форсунки, жидкость подаётся в определённый цилиндр двигателя.

Роль БУ определять, сколько жидкости надо подавать в тот или иной цилиндр. На показатели влияет много чего: объём воздуха, жар двигателя, амплитуда вращения КВШ вала и многое другое. Датчики выдают информацию обо всём этом блоку управления, который считывает информацию и делает соответствующие выводы. Таким образом, осуществляется автоматический контроль подачи горючего.

Принцип работы инжекторного двигателя

На сегодняшний день инжекторные системы по сравнению с карбюраторными имеют много преимуществ. Это и снижение токсичности выхлопа, и уменьшение расхода топлива, и повышение мощности двигателя, и многое другое.

Примечательно, что система питания двигателя по-разному реагирует на те или иные режимы езды.

  1. Богатая ТВС создаётся при заводе мотора «на холодную». И это понятно, ведь требуется такой состав, в котором бензина больше, чем воздуха. Однако в таком режиме движение запрещено, так как это вызывает увеличение расхода топлива и быстрый износ элементов двигателя. Поэтому, особенно на карбюраторных автомобилях рекомендуется сначала прогревать мотор несколько минут, а уже потом стартовать с места.
  2. В режиме ХХ ТВС уже обеднённая. Образуется при движении с горки на спуск или при работе мотора в сильно прогретом состоянии.
  3. Меняется состав смеси и при движении с частичными нагрузками, при ускорении.

ТСД дизельного агрегата

Дизельные моторы для некоторых людей ассоциируются с повышенным шумом, большим количеством вибраций и высокой детонацией. На самом деле, это устаревшая информация. Современные дизельные агрегаты, благодаря использованию новейших самоуправляемых СУ и технологичным корректировкам, работают почти также тихо, как и бензиновые моторы.

Система питания Коммон Рейл

Система питания – одно из важнейших звеньев. Она сформировалась вместе с остальными частями автомобильной системы. Чего только стоит система Коммон Рейл, покорившая миллионы фанатов по всему миру.

Дизельный мотор, как и бензиновый, является двигателем внутреннего сгорания. По конструкции он мало отличается он него, ведь основу агрегатов составляют цилиндры, поршни и другие части. Но в дизельных ДВС степень сжатия и давление намного выше. Из-за этого дизельный силовой агрегат значительно тяжелее бензинового. Это делается для того чтобы мотор лучше противостоял высоким нагрузкам.

Главное отличие дизельного агрегата – в способе формирования ТВС, воспламенении и сгорании. Если в бензиновом двигателе ТВС формируется в системе впуска, и её воспламенение осуществляется от свечи зажигания, в дизельном агрегате всё по-другому.

  1. В первую очередь воздух и солярка поступают в цилиндры ДВС порознь. Первым идёт воздух, который накаляется и сжимается до высоких отметок. Затем поступает солярка, тоже под большим давлением, чтобы воспламенение проходило самопроизвольно, ведь свечей в дизельном автомобиле нет.
  2. Роль свечи в дизельных агрегатах выполняют нагревательные элементы, которые быстренько обогревают воздух в камере, пока ещё двигатель холодный.

Теперь о принципе работы. Дизельное топливо закачивается из резервуара с помощью насоса, и после фильтрации через ТНВД подаётся на форсунки. Последние распыляют солярку.

Как работает дизельный мотор

Примечательно, что в системе дизеля принято говорить о двух типах давления. Низкое образуется в области предшествующей подготовки ТВС, ещё перед отправкой солярки в отдел высокого давления. Что касается высокого давления, то оно образуется непосредственное в отсеке доработки смеси, когда она переходит в рабочую камеру.

ТСД дизельного мотора выполняет разом несколько функций: подаёт горючее в чётко отмеренном объёме, в нужный момент, и под конкретным давлением. Из-за большого количества требований, ТСД дизеля более сложна, чем топливная система бензинового агрегата. И стоит она тоже, дороже.

В дизельных автомобилях большую роль играет ТНВД. Этот насос отвечает за высокое давление, его достаточность. Если в бензиновой машине мощностный режим агрегата варьируется нажатиями на педаль газа, то в новых дизельных автомобилях объём подаваемой солярки от этого не увеличивается, а меняется только программа, управляющая регуляторами.

Устройство комбинированной системы впрыска

Комбинированная система впрыска состоит из следующих элементов:

  • Система непосредственного впрыска (форсунки, топливная рампа высокого давления);
  • Система распределенного впрыска (форсунки, топливная рампа низкого давления);
  • Топливный насос высокого давления.

Такие элементы системы непосредственного впрыска, как форсунки, устанавливаются непосредственно в камерах сгорания цилиндров. Топливная рампа высокого давления поддерживает давление 20 МПа. Форсунки системы распределенного впрыска устанавливаются перед впускными клапанами в каналах впускного коллектора.

Принцип работы системы

ЭБУ получает соответствующие сигналы от различных датчиков. Учитывается положение педали газа, частота вращения вала двигателя, температура охлаждающей жидкости и температура самого топлива. Электронный блок управления получает данные о подъеме иглы форсунок, скорости движения транспортного средства, давлении наддува воздуха и его температуре на впуске.

ЭБУ обрабатывает полученную от датчиков информацию, а затем посылает сигнал на ТНВД. Это обеспечивает подачу необходимого и оптимального количества топлива к форсункам. Дополнительно обеспечивается наилучший угол опережения впрыска с учетом конкретных условий работы двигателя. Любая дополнительная нагрузка сразу отмечается ЭБУ, на ТНВД приходит сигнал и происходит увеличение топливоподачи для компенсации возросших нагрузок.

Электронный блок управления осуществляет контроль за работой свечей накаливания. ЭБУ следит за периодом накаливания, режимом работы свечей накаливания и периодом после накаливания. Все это происходит с учетом зависимости от температуры.

Ниже приведена схема электронного регулирования одноплунжерного насоса VE от Bosch для дизельного мотора:

  1. датчик начала впрыска;
  2. датчик частоты вращения коленвала и ВМТ;
  3. воздухорасходомер;
  4. датчик температуры ОЖ;
  5. датчик положения педали газа;
  6. блок управления;
  7. устройство ускорителя пуска и прогрева ДВС;
  8. устройство для управления клапаном рециркуляции отработанных газов;
  9. устройство для управления углом опережения топливного впрыска;
  10. устройство для управления приводом дозирующей муфты;
  11. датчик хода дозатора;
  12. датчик температуры топлива;
  13. топливный насос высокого давления;

Ключевым элементом в данной системе выступает устройство для перемещения дозирующей муфты ТНВД (10). Управляет процессами подачи топлива блок управления (6). Информация поступает в блок от датчиков:

  • датчик начала впрыска , который установлен в одной из форсунок (1);
  • датчик ВМТ и частоты вращения коленвала (2);
  • воздухорасходомер (3);
  • датчик температуры охлаждающей жидкости (4);
  • датчик положения педали акселератора (5);

В памяти блока управления хранятся заданные оптимальные характеристики. Основываясь на информации от датчиков, ЭБУ посылает сигналы на механизмы управления цикловой подачей и углом опережения впрыска. Так происходит регулировка величины цикловой подачи топлива в различных режимах работы силового агрегата, а также в момент холодного запуска двигателя.

Исполнительные устройства имеют потенциометр, который посылает обратный сигнал в ЭБУ, благодаря чему определяется точное положение дозирующей муфты. Регулировка угла опережения впрыскивания топлива происходит по аналогичному принципу.

ЭБУ отвечает за создание сигналов, которые обеспечивают регулировку многочисленных процессов. Блок управления стабилизирует частоту вращения в режиме холостого хода, регулирует рециркуляцию отработанных газов с определением показателей по сигналам датчика массового расхода воздуха. Блок сопоставляет сигналы в реальном времени от датчиков с теми значениями, которые в нем запрограммированы в виде оптимальных. Далее происходит передача выходного сигнала от ЭБУ на сервомеханизм, который обеспечивает необходимое положение дозирующей муфты. При этом достигается высокая точность регулирования.

Данная система имеет программу самодиагностики. Это позволяет осуществлять отработку аварийных режимов для обеспечения движения транспортного средства даже при наличии ряда определенных неисправностей. Полный отказ происходит только при поломке микропроцессора ЭБУ.

Наиболее распространенным решением регулировки цикловой подачи для одноплунжерного насоса высокого давления распределительного типа является использование электромагнита (6). Такой магнит имеет поворотный сердечник, конец которого соединяется посредством эксцентрика с дозирующей муфтой (5). Электрический ток проходит в обмотке электромагнита, при этом угол поворота сердечника может быть от 0 до 60°. Так происходит перемещение дозирующей муфты (5). Данная муфта в итоге регулирует цикловую подачу ТНВД.

Топливные насосы с клапанным регулированием

Топливные насосы с клапанным регулированием цикловой подачи топлива могут дозировать подачу изменением начала активного хода плунжера, его конца изменением начала и конца этого хода.

Рассмотрим наиболее общий случай, когда дозируют изменением начала и конца подачи. Такое регулирование называется смешанным. В насосе со смешанным регулированием при набегании кулачковой шайбы 15 на ролик толкателя 1 плунжер 2 поднимается и вытесняет топливо через открытый всасывающий клапан 6 в приемную магистраль насоса. Одновременно с толкателем поднимается и левый конец рычага 13, противоположный выступ которого находится в контакте с толкателем 12 стержня 10, управляющего всасывающим клапаном 8 Рычаг 13 вращается на эксцентриковой оси 14. Начало подачи топлива через нагнетательный клапан 4 к форсунке совпадает с моментом отхода стержня 10 от торца клапана 6 и посадки всасывающего клапана на гнездо. Подача продолжается до подхода стержня 9 к торцу перепускного клапана 3.

Цикловая подача (активный ход) плунжера изменяется при повороте эксцентриковой оси 14. При повороте оси изменяется расстояние между осями эксцентрика и толкателей, поэтому меняется начало и конец подачи топлива. Привод эксцентриковой оси обычно связан с регулятором дизеля. Равномерность подачи топлива по отдельным цилиндрам регулируют изменением зазора между торцами толкателей и стержней при помощи болтов 11, ввертываемых в толкатели.

Преимуществами такого насоса являются простота конструкции плунжера, автоматическое изменение начала и конца подачи при изменении частоты вращения коленчатого вала дизеля, возможность использования одной и той же кулачковой шайбы для переднего и заднего хода, удовлетворительная характеристика цикловой подачи с изменением частоты вращения коленчатого вала дизеля. К недостаткам относится усложненная конструкция насоса вследствие наличия специальных устройств для регулирования всасывающего и перепускного клапанов.

Применение этих насосов в быстроходных дизелях затруднительно в результате наличия сложного привода клапанов, а также увеличенных масс подвижных деталей. При отсутствии перепускного клапана и детален его привода насос характеризуется регулированием подачи только по началу, а при отсутствии всасывающего клапана — только по концу подачи.

В топливном насосе начало и конец подачи регулируют одним и тем же клапаном. Насос имеет всасывающий 1, нагнетательный 2 и отсечной 3 клапаны. Отсечной клапан 3 приводится в движение основным рычагом 10, связанным с толкателем насоса через стержень 4 клапана. Кроме основного рычага 10 имеется дополнительный рычаг 6. Этот рычаг одним концом входит в специальное гнездо толкателя клапана, а другим упирается в регулировочный болт 8, установленный в выступе основного рычага 10 При движении плунжера насоса вверх перемещается и конец рычага 10, установленного на эксцентриковой оси 9. Тогда регулировочный болт 8 отходит от конца дополнительного рычага 6, а пружина отсечного клапана перемещает стержень 4 клапана вниз. Когда отсечной клапан при движении вниз достигает своего гнезда, утечки через него топлива прекращаются и начинается активный ход плунжера, в течение которого сжатое топливо поступает через нагнетательный клапан 2 к форсунке. При подходе основного рычага 10 к торцу стержня 4 отсечной клапан открывается и активный ход плунжера насоса прекращается. Изменением расстояний l1 и l2 при повороте эксцентриковых осей 9 и 7 меняют начало и конец подачи, а также количество впрыскиваемого в цилиндр дизеля топлива. При увеличении расстояния l1, отсечка наступает раньше и подача топлива уменьшается, а при увеличении расстояния l2 отсечной клапан садится на гнездо позже, поэтому активный ход запаздывает и цикловая подача уменьшается. Равномерность подачи по отдельным цилиндрам изменяют регулировочным устройством 5.

Несмотря на то, что насосы с клапанным регулированием имеют удовлетворительную характеристику, простую конструкцию плунжера (гладкий), их ограниченно применяют в дизелях вследствие конструктивной. сложности и наличия дополнительных элементов. В настоящее время стремятся заменять клепанные насосы насосами золотникового типа даже на тех дизелях, на которые клапанные насосы устанавливали раньше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector