Устройство и принцип работы турбокомпрессора
Содержание:
- Введение
- Паровая турбина
- История развития и современные проблемы производства тепловых двигателей
- Устройство турбины
- Принцип работы автомобильной турбины
- В чем отличие biturbo от twinturbo?
- КПД тепловой машины
- Как работает турбонаддув в машине
- Что необходимо знать для грамотной эксплуатации бензиновой турбины?
- Турбонагнетатели: плюсы и минусы
- Как работает
- Отличительные черты
- Работа турбин
Введение
Что такое турбина и как она действует? Это лопаточная система (машина), которая занимается преобразованием энергий: внутренней и/или кинетической. Этот ресурс дает рабочее тело и позволяет выполнять валу его механическое предназначение. На лопатки оказывают воздействие посредством струи рабочего тела, что закрепляют около окружностей роторов. Она же приводит к их движению.
Может находить свое применение в качестве турбины электростанций (АЭС, ТЭС, ГЭС), фрагмента приводов для различного типа транспортов, а также может служить составной частью гидронасосов и газотурбинных двигателей. Настоящая энергетическая промышленность не способна обходиться без этих устройств. Вид теплопередачи вращения турбины на тепловых электростанциях, обладает высокой производительностью, он очень энергоемкий. Это позволяет человеку использовать различные ресурсы в относительно малых количествах, в сравнение с объемом получаемого электричества.
Паровая турбина
Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.
Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.
История развития и современные проблемы производства тепловых двигателей
Первые тепловые двигатели имели очень низкий КПД, например, первый паровоз (рис. 6), который был создан в начале XIX века, имел коэффициент полезного действия около 3%, а последние паровозы (рис. 7), которые ходили по железным дорогам в прошлом веке, имели КПД повыше – около 7–9%.
Рис. 6. Первый паровоз. (Источник)
Рис. 7. Один из последних паровозов. (Источник)
Тем не менее, даже при таких низких значениях КПД данные транспортные средства очень активно эксплуатировались, т. к. более совершенных агрегатов на то время попросту не было. На сегодняшний день КПД тепловых двигателей, конечно, гораздо выше, например, дизельный двигатель (рис. может иметь КПД до 40%, что является очень неплохим показателем. Паровая турбина (рис. 9) может достигать еще более оптимального значения КПД в 60%, на сегодняшний день это наилучший показатель среди всех видов тепловых двигателей.
Рис. 8. Дизельный двигатель
Рис. 9. Современная паровая турбина. (Источник)
В конце занятия следует отметить очень важную тенденцию в развитии современного двигателестроения. Как мы видели, основные принципы работы тепловых двигателей уже давно открыты и получены эффективные технологии их изготовления, но возникает проблема экологичности их использования. Поскольку все тепловые двигатели потребляют топливо, то от них неизбежно возникают вредные выбросы в окружающую среду. Так вот одной из основных задач науки и техники в этой области является минимизация нанесения вреда окружающему нас миру от продуктов деятельности подобных устройств.
Тепловые двигатели на сегодняшний день уже являются объектами прошлого, и на первый план выходят двигатели иного принципа работы, о них мы поговорим в будущем.
На следующем уроке мы займемся решением задач по теме «КПД».
Список литературы
- Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
- Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Кафедра теоретической физики (Источник).
- Классная физика (Источник).
- YouTube (Источник).
Домашнее задание
- Стр. 56: вопросы № 1–3; стр. 57: вопросы № 1–4, задание № 5. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Каков КПД теплового двигателя, который совершил полезную работу 70 кДж, если при полном сгорании топлива выделилась бы энергия 200 кДж?
- При сгорании топлива в тепловом двигателе выделилось количество теплоты 200 кДж, а холодильнику передано количество теплоты 120 кДж. Каков КПД теплового двигателя?
- Автомобиль прошел 100 км со средней скоростью 40 км/ч. При этом он израсходовал 8 л бензина. Какую среднюю мощность развивал двигатель автомобиля, если его КПД 30%?
Устройство турбины
Для того чтобы увидеть внутреннее устройство турбины, при ее изображении «вырезана» передняя верхняя четверть. Точно также показана лишь задняя часть кожуха 2. Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. Отдельные роторы цилиндров (ротор ЦВД 47, ротор ЦСД 5 и ротор ЦНД 11) жестко соединяются муфтами 31 и 21. К полумуфте 12 присоединяется полумуфта ротора электрогенератора (не показан), а к нему — ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах — 5) может достигать 80 м.
Валопровод вращается во вкладышах 42, 29, 23, 20 и т.д. опорных подшипников скольжения на тонкой масляной пленке и не касается металлической части вкладышей подшипников. Как правило, каждый из роторов размещают на двух опорных подшипниках. Иногда между роторами ЦВД и ЦСД устанавливают только один общий для них опорный подшипник (см. позицию 29 на рис. 6.1). Расширяющийся в турбине пар заставляет вращаться каждый из роторов, возникающие на них мощности складываются и достигают на полумуфте 12 максимального значения.
К каждому из роторов приложено осевое усилие. Они суммируются, и их результирующая осевая сила передается с гребня 30 на упорные сегменты, установленные в корпусе упорного подшипника.
Каждый из роторов помещают в корпус цилиндра (см., например, поз. 24). При больших давлениях (а в современных турбинах оно может достигать 30 МПа 300 ат) корпус цилиндра (обычно ЦВД) выполняют двухстенным (из внутреннего 35 и внешнего 46 корпусов). Это уменьшает разность давлений на каждый из корпусов, позволяет сделать его стенки более тонкими, облегчает затяжку фланцевых соединений и позволяет турбине при необходимости быстро изменять свою мощность.
Все корпуса в обязательном порядке имеют горизонтальные разъемы 13, необходимые для установки роторов внутри цилиндров при монтаже, а также для легкого доступа внутрь цилиндров при ревизиях и ремонтах. При монтаже турбины все плоскости разъемов нижних половин корпусов устанавливают специальным образом (для простоты можно считать, что все плоскости разъема совмещают в одной горизонтальной плоскости). При последующем монтаже ось валопровода помещают в эту плоскость разъема, что обеспечивает центровку — ось валопровода будет точно совпадать с осью кольцевых расточек корпусов. Этим будут исключены задевания ротора о статор, которые могут привести к тяжелой аварии.
Пар внутри турбины имеет высокую температуру, а ротор вращается во вкладышах на масляной пленке, температура масла которой как по соображениям пожаробезопасности, так и необходимости иметь определенные смазочные свойства, не должна превышать 100 °С (а температура подаваемого и отводимого масла должна быть еще ниже). Поэтому вкладыши подшипников выносят из корпусов цилиндров и размещают их в специальных строениях — опорах (см. поз. 45, 28, 7 на рис. 6.1). Таким образом, вращающиеся концы каждого из роторов соответствующего цилиндра необходимо вывести из невращающегося статора, причем так, чтобы с одной стороны исключить какие-либо (даже малейшие) задевания ротора о статор, а с другой — не допустить значительную утечку пара из цилиндра в зазор между ротором и статором, так как это снижает мощность и экономичность турбины. Поэтому каждый из цилиндров снабжают концевыми уплотнениями (см. поз. 40, 32, 19) специальной конструкции.
Турбина устанавливается в главном корпусе ТЭС на верхней фундаментной плите 36 (см. рис. 2.6). В плите выполняются прямоугольные окна по числу цилиндров, в которых размещаются нижние части корпусов цилиндров, а также осуществляется вывод трубопроводов, питающих регенеративные подогреватели, паропроводы свежего и вторично перегретого пара, переходный патрубок к конденсатору.
После изготовления турбина проходит контрольную сборку и опробование на заводе-изготовителе. После этого ее разбирают на более-менее крупные блоки, доводят до хорошего товарного вида, консервируют, упаковывают в деревянные ящики и отправляют для монтажа на ТЭС.
Принцип работы автомобильной турбины
Как уже писалось выше, принцип действия турбонаддува в автомобиле основывается на использовании энергии, выделяемой отработавшими газами двигателя. Газы вращают колесо турбины, которое, в свою очередь, через вал передает крутящий момент колесу компрессора.
Видео — принцип работы двигателя с турбонаддувом:
Тот, в свою очередь, сжимает воздух и осуществляет его нагнетение в систему. Охлаждаясь в интеркулере, сжатый воздух попадает в цилиндры двигателя и обогащает смесь кислородом, обеспечивая эффективную «отдачу» мотора.
Собственно, именно в принципе действия турбины в автомобиле кроются ее достоинства и недостатки, устранить которые инженерам весьма непросто.
В чем отличие biturbo от twinturbo?
По сути, твин-турбо и биТурбо-это лишь разные коммерческие названия системы наддува, состоящей из 2-х турбин.
Би-турбо (biturbo) — система турбонаддува, состоящая из двух последовательно включаемых в работу турбин. В такой системе применяют 2 турбины, одну маленького размера другую большого, сделано это потому, что маленькая турбина раскручивается значительно быстрее, и вступает в работу первой, затем, при достижении более высоких оборотов мотора, раскручивается вторая, большая турбина, и добавляет значительно больший воздушный заряд. Таким образом прежде всего минимизируется лаг, образуется достаточно ровная разгонная характеристика автомобиля без рывка, свойственного большим турбинам, и достигается возможность использовать большие турбины на двигателях устанавлеваемых в автомобилях предназначенных не только для езды по гоночным трассам, но и по городским дорогам, где возможность крутить мотор постоянно есть не всегда, а получить больше мощности с мотора небольшого объема имеет смысл, по каким либо причинам, например связанным с законодательством по налогам данной страны на литраж мотора. Данная статья опубликована в паблике Корче вк.ком/v_korche. Если вы видите эту статью в другом сообществе, значит ленивые администраторы других сообществ нагло копируют материал у нас и даже не читают его. Системы би-турбо весьма дороги, и по этому их установка, как правило в серийном производстве, производится на автомобили высокого класса, типа MASERATI или ASTON MARTIN (там компрессоры).
Такая система может быть установлена как на двигатель V6, каждая турбина будет висеть на своей головке по выхлопу, впуск общий, так и на рядном моторе например рядная 4-ка, в этом случае турбины можно включить по выхлопу как парралельно, 2 цилиндра на одну, 2 на другую, так и последовательно — сначала большая турбина, потом маленькая. Встречаются так же варианты, когда к маленькой турбине подходит выхлоп только с 2-х цилиндров, а к большой соответственно с 2-х оставшихся, и с выхода малой турбины.
Твин-турбо (twinturbo) — в данной системе в отличии от системы би-турбо, основной задачей является не снизить лаг, а добиться большей производительности по прокачиваемому воздуху, либо большего давления наддува. Производительность по прокачиваемому воздуху необходима, в случаях когда мотор работая на высоких оборотах, потребляет воздух больше, чем турбина способна обеспечить, таким образом возможно падение давления наддува. В системах Twinturbo применяются две одинаковые турбины. Соответственно производительность такой системы в 2 раза больше чем системы состоящей из одной турбины, при этом если применить 2 небольших турбины которые по производительности будут равны одной большой, то можно достигнуть эффекта снижения лага, при идентичной производительности. Существуют так же ситуации, когда производительности имеющихся в наличии больших турбин, оказывается недостаточно, например при построении мотора дрэгстера, тогда так же используется комбинация из 2-х турбин. Данная схема как и вариант biturbo может работать как на двигателях с V образным развалом головок, так и на рядных двигателях. Варианты включения турбин такие же как и в битурбо.
Существуют так же системы состоящие из 3-х и более одинаковых турбин, результат преследуется тот же что и в twinturbo. Такие системы в гражданском применении как правило не имеют распостранения, и применяются как правило, для построения мощных спортивных моторова, для автомобилей участвующих в драгрэйсинге.
В современных турбированных двигателях (в частности RRS V8 дизель) турбины имеют изменяемую геометрию крыльчаток. Это минимизирует проблему турбоямы и даёт высокий потенциал турбонадувва уже на самых низких оборотах коленвала двигателя. Кроме того это добавляет экономию топлива.
КПД тепловой машины
Ознакомимся со схемой и физическим принципом работы тепловой машины (рис. 5). От нагревателя тепло () передается рабочему телу (Р. Т.), т. е. газу, который образовался в результате сгорания топлива, рабочее тело совершает работу (), остатки неизрасходованного на полезную работу тепла () передаются холодильнику.
Рис. 5. Схема тепловой машины
Формула для вычисления КПД тепловой машины:
Где .
Обозначения:
полезная работа, которую совершает рабочее тело, Дж;
количество теплоты, которое передал рабочему телу нагреватель, Дж;
количество теплоты, которое рабочее тело передало холодильнику, Дж.
Замечание. Коэффициент полезного действия не может быть равен и не может превышать 100 процентов. Этот факт легко увидеть из второй формулы для КПД, в которой числитель меньше знаменателя. Таким образом, КПД всегда меньше 100% или меньше 1, если его выражать в долях.
Как работает турбонаддув в машине
Энергия отработанных выхлопных газов в двигателе направляется на турбинное колесо нагнетателя, которое под воздействием газов вращается в своем корпусе, имеющем особую форму для улучшения кинематики прохождения выхлопных газов.
Температура здесь весьма высока, а потому корпус и сам ротор турбины вместе с ее крыльчаткой выполняются из жаропрочных сплавов, способных выдерживать длительное высокотемпературное воздействие. Также в последнее время для этих целей используются керамические композиты.
Компрессорное колесо, вращаемое за счет энергии турбины, осуществляет всасывание воздуха, его сжатие и последующее нагнетание в цилиндры силового агрегата. При этом вращение компрессорного колеса также производится в отдельной камере, куда попадает воздух после прохождения через воздухозаборник и фильтр.
Видео — для чего нужен турбокомпрессор и как он работает:
Как турбинное, так и компрессорные колеса, как уже говорилось выше, жестко закрепляются на роторном валу. При этом вращение вала производится с помощью подшипников скольжения, которые смазываются моторным маслом из основной системы смазки двигателя.
Подача масла к подшипникам производится по каналам, которые располагаются непосредственно в корпусе каждого подшипника. Для того, чтобы герметизировать вал от попадания масла внутрь системы, используются специальные уплотнительные кольца из жаростойкой резины.
Безусловно, основной конструктивной сложностью для инженеров при проектировании турбонагнетателей является организация их эффективного охлаждения. Для этого в некоторых бензиновых моторах, где тепловые нагрузки наиболее высоки, нередко применяется жидкостной охлаждение нагнетателя. При этом корпус, в котором расположены подшипники, включается в двухконтурную систему охлаждения всего силового агрегата.
Еще одним важным элементом системы турбонаддува является интеркулер. Его предназначением выступает охлаждение поступающего воздуха. Наверняка многие из читателей этого материала зададутся вопросом о том, зачем охлаждать «забортный» воздух, если его температура и так невелика?
Ответ кроется в физике газов. Охлажденный воздух увеличивает свою плотность и, как результат, возрастает его давление. При этом конструктивно интеркулер представляет собой воздушный либо жидкостный радиатор. Проходя через него, воздух снижает температуру и увеличивает свою плотность.
Важной деталью системы турбонаддува автомобиля выступает регулятор давления наддува, представляющий собой перепускной клапан. Он применяется с целью ограничить энергию отработавших газов двигателя и направляет их часть в сторону от колеса турбины, что позволяет регулировать давление наддува
Привод клапана может быть пневматическим или электрическим, а его срабатывание осуществляется за счет сигналов, получаемых от датчика давления наддува, которые обрабатываются блоком управления двигателем автомобиля. Именно электронный блок управления (ЭБУ) подает сигналы на открытие или закрытие клапана в зависимости от данных, получаемых датчиком давления.
Помимо клапана, регулирующего давление наддува, в воздушном тракте непосредственно после компрессора (где давление максимально) может монтироваться предохранительный клапан. Целью его использования является защита системы от скачков давления воздуха, которые могут быть в случае резкого перекрытия дроссельной заслонки двигателя.
Избыточное давление, возникающее в системе, стравливается в атмосферу с помощью так называемого блуофф-клапана, либо направляется на вход в компрессор клапаном типа bypass.
Что необходимо знать для грамотной эксплуатации бензиновой турбины?
Для обеспечения долговечной работы турбины на бензиновом моторе не нужно экономить на количестве и качестве моторного масла. Любители пропускать интервалы замены масла в моторе рано или поздно столкнуться с проблемами и нарушениями в работе турбины. Она очень восприимчива к качеству используемого масла. Дешёвое масло не сможет обеспечить необходимый уровень трения рабочих элементов и они при интенсивном использовании автомобиля достаточно быстро придут в негодность и потребуют замены.
При покупке автомобиля, оснащённого турбиной надо обязательно выполнить замену моторного масла и прочистку всей системы. Смешивать доливая другое масло нельзя, так как оно теряет свои свойства и эффективность его работы стремится к нулю. Полная замена масла позволит избежать вредных воздействий и усилить защиту турбины бензинового мотора.
Есть некоторые особенности эксплуатации мотора, оснащённого турбиной. После длительной поездки на машине двигатель во время остановки сразу глушить не нужно. Необходимо дать ему время поработать на холостых оборотах и немножко остыть. Резкое выключение мотора создаёт температурный перепад отрицательным образом, сказывающийся на прочности и надёжности рабочих элементов турбины мотора.
Турбонагнетатели: плюсы и минусы
Принцип действия обычных компрессоров, которые приводятся в движение ременной или кривошипно-шатунной передачей в том, что устройство и принцип действия таких устройств потребляют энергию двигателя. На двигатель создается дополнительная нагрузка.
Турбонагнетатели используют дармовую энергию. Такой принцип действия почти идеальный, так как отработанные газы попросту выбрасываются, а здесь они еще служат приводом ротора и сидящих на нем колес.
Турбонаддув может получить развивать мощность до 300 лс с одного литра объема.
Двигатель с установленным турбонагнетателем (турбонаддувом) может развивать мощность на 40% больше, чем ДВС без него. К тому же, турбированные движки намного экономичнее. У ДВС без турбонагнетателя низкий КПД из-за потери на трение и низкой тепловой эффективности.
Соответственно, при увеличении объема двигателя без турбированного наддува, коэффициент полезного действия еще ниже. Турбированные моторы с малым объемом эффективнее ДВС с большим объемом.
Недостатки турбонагнетателей
При эксплуатации этого устройства появляется, так называемый, эффект турбоямы. Так привод осуществляется без механического соединения с валом двигателя, а за счет физического воздействия газов, то иногда появляется несоответствие в работе турбонаддвува и самого двигателя. То есть, мощность, которую задает водитель нажатием на педаль газа не соответствует мощности компрессора. Такие проблемы в работе составных устройств мотора можно выявить, если делать диагностику авто через ноутбук.
У турбонагнетателей есть еще такие недостатки, которые присущи обычным компрессорам. Чтобы их работа была максимально эффективной, они должны вращаться на максимальной скорости. К тому же, при таком режиме работы температура некоторых деталей доходит до 1000 С, также есть сложность в смазке и отведении тепла.
Высокие температуры уменьшают качество смазки и создают очень горячий поток входящего воздуха. Охлаждение нагнетаемого воздуха — острый вопрос.
Для обеспечения эффективного охлаждения подбирается интеркулер с особой тщательностью по данным режима работы устройства.
В конструкции устройства турбонагнетателя, как и любом другом нагнетающем устройстве, должен быть вмонтирован спускной клапан (стравливающий избыточное давление). С турбиной немного сложнее. В турбине, помимо, отслеживания избыточного давления наддува нужно еще перепускать отработанные газы, чтобы обеспечить снижения излишнего давления во впускном коллекторе для исключения образования чрезмерно высокой скорости вращения ротора при больших оборотах ДВС.
Для увеличения ресурса эксплуатации турбонаддува, турбине надо дать остыть на холостом режиме работы мотора после работы на очень высоких оборотах. Достаточно дать поработать на холостых оборотах несколько минут, затем мотор можно заглушить.
Для удобства водителям, создан специальный турботаймер. Турботаймер — электронное устройство, которое после выключения замка зажигания, позволяет мотору еще некоторое время работать, чтобы эксплуатировать турбонагнетатель в щадящем режиме и не сломать его. Его можно запрограммировать на определенное время или сделать, чтобы работал в зависимости от температуры нагрева двигателя.
Если турботаймера нет, то водителю надо самостоятельно ждать несколько минут на холостом ходу и не глушить мотор сразу.
Как работает
Стоит отметить, что принцип работы турбины на бензиновом двигателе такой же, как и на дизельном. Во время работы ДВС вырабатываются выхлопные газы. Они поступают в корпус (горячую часть улитки), где двигаются по лопаткам турбинного колеса. Последнее раскручивается до невероятных скоростей – 100 и более тысяч оборотов в минуту. Поскольку турбинное колесо жестко соединено с валом, крутящий момент передается на вторую холодную часть турбины. Та, в свою очередь, начинает захватывать кислород из атмосферы. Он проникает внутрь после того, как пройдет через фильтр. Далее воздух под давлением попадает во впускной коллектор, где смешивается с топливом и проникает в камеру сгорания. В качестве материалов для корпуса турбины используются жаропрочные марки стали и железоникелевый сплав.
Производительность компрессора зависит от ее формы и габаритных размеров. Чем больше ее диаметр, тем больше воздуха засасывается во впускной коллектор. Но нельзя постоянно увеличивать размеры компрессора. Это может привести к турбозадержке. Малая турбина раскручивается значительно быстрее до номинальной скорости. Но на пике имеет меньшую производительность. Поэтому размеры и форма элемента подбираются строго индивидуально для каждого ДВС. Нельзя установить агрегат от бензинового авто на дизельный, и наоборот. Хоть и имеет одинаковый принцип работы турбина, действовать она будет иначе на разных авто.
Важный момент: для регулирования давления наддува в конструкции предусмотрен специальный перепускной клапан. Он имеет пневматический привод, а управляется ЭБУ двигателя.
Отличительные черты
Как уже говорилось раньше, предпринимались попытки использовать газотурбинный двигатель для автомобиля, однако дальше испытаний дело не пошло. Единственная отрасль, в которой агрегат нашёл применение – авиация.
Если сравнивать газотурбинный мотор с иными силовыми установками, то у первого изделия значение вырабатываемой мощи по отношению к массе больше. Так же плюс в используемом топливе, доведённый до мелкодисперсного состояния, ассортимент воображает, главный вид – керосин и дизель. Но возможно применение: бензина, газа, спирта, мазута, угольной пыли и т.п.
Агрегат с поршнями и газотурбинная установка, это моторы, работающие на основе тепла, преобразующие энергию, выделившуюся при горении в работу механики. Разница между устройствами заключается в течение процесса. В обоих моторах происходит забор и воздушное сдавливание, после чего подаётся порция горючего, затем субстанция горит, увеличивается и сбрасывается атмосферную среду.
В поршневых установках описанные действия происходят в одной точке – камере сгорания, при этом соблюдается очерёдность действий. Для газотурбинного двигателя характерно протекание действий в нескольких частях механизма одновременно.
Что бы понять, как работает газотурбинный двигатель, разделяют этапы протекания процессов, которые в сумме составляют преобразование топлива в работу:
Подведение горючего и образование смеси.
За счёт прохождения атмосферного воздуха через компрессорное колесо, смесь сжимается в объёме, увеличивая напор, до сорока раз. После происходит перетекание воздуха в горящий объём, куда подаётся и топливо. Перемешиваясь с воздушной массой и сгорая, смесь энергетически преобразуется.
Энергетическое рабочее преобразование.
Выделившуюся силу переформатируют в работу механики. Для этого используют специальные лопатки, которые вращаются в газовой струе, выходящей с напором.
Распределение силы.
Распределяя полученную работу, задействуют её кусок в сдавливании очередной воздушной порции, оставшаяся мощь отводится для привода механизма.
Таким образом, видно, что действие газотурбинного устройства сопровождается оборачиванием и это единственное перемещение в установке. Тогда как для других видов силовых агрегатов действию сопутствует перемещение вытеснителя. Учитывая, что габариты и масса газотурбинного агрегата меньше поршневого собрата, а полезный коэффициент и мощь выше, превосходство первого очевидно. Однако увеличенный аппетит и сложность эксплуатации нивелируют преимущества. С целью экономии горючего, установки применяют устройство обмена теплом.
Схема включения в процесс турбины:
Работа турбин
Функционирование данных устройств основано на том, что сквозь всю конструкцию турбированного компрессора в процессе работы проходят три потока вещества:
- Воздух. Этот поток обеспечивает выполнение основной функции устройства. Атмосферный воздух закачивается с помощью пневмопривода через отверстие в корпусе конструкции. Он сжимается в камере компрессора посредством движения колеса и подается под давлением через патрубок в цилиндры двигателя.
- Выхлоп. Этот поток обеспечивает безопасное и экологичное отведение из машины продуктов сгорания. Смесь от отработанного топлива поступает из двигателя через отверстие в нижней части конструкции и попадает в камеру турбины. Там оно проходит через колесо и выбрасывается в атмосферу из отверстия в корпусе.
- Масло. Этот поток обеспечивает снабжение компрессорного колеса смазочным веществом. Техническое масло поступает в конструкцию через отверстие в верхней части камеры компрессора. Оно проходят через этот отдел и смазывают рабочий механизм, а затем выводится из агрегата через отверстие в его нижней части.
В норме, когда турбированный компрессор полностью исправен, воздушный поток проходит легко и быстро, двигатель реагирует без задержек, и технические показатели имеют высокие значения. Выхлопной поток при этом светлого цвета, белый и вовсе бесцветный, с умеренным запахом и относительно экологичный. Масло чистое, без излишнего запаха, нормальной плотности, без сгустков, оно идет легко и мягко.