Система питания дизельного двигателя- устройство и неисправности
Содержание:
- Признаки неисправности дизельного двигателя
- Система питания дизельного двигателя внутреннего сгорания
- Инжекторные топливные системы
- Особенности систем фильтрации для различных видов двигателей
- Жесткая работа
- Предпусковой топливоподкачивающий насос
- Предпусковой топливоподкачивающий насос
- Схема топливной системы дизеля
- Контроль исправности системы охлаждения
- Тест на сжатие
- Основные положения
- Турбины
- Основные виды технической реализации
- Инжекторные топливные системы
Признаки неисправности дизельного двигателя
Запуск двигателя затруднен
Износ нагнетательных элементов насоса высокого давления. Неправильный угол опережения подачи топлива в двигателе. Износ распылителей, вызывающий плохое распыление топлива. Слишком низкое давление впрыска.
Нехватка топлива перед насосом высокого давления из-за попадания воздуха в систему подачи топлива. Неисправности подкачивающего топливного насоса. Слишком малая доза топлива при запуске, вызванная неправильной работой регулятора. Загустение топлива зимой. Неисправны свечи накаливания.
Снижение мощности двигателя
Износ прецизионных элементов топливного насоса высокого давления или регулятора. Неправильная регулировка насоса или всережимного регулятора. Неправильный угол опережения впрыска. Износ или повреждение распылителей. Чрезмерное снижение давления впрыска. Недостаточное количество топлива, подаваемого системой нагнетания, из-за засорения топливного фильтра, недостаточной производительности подкачивающего топливного насоса или попадания воздуха в топливную систему.
Повышенный расход топлива
Неверный угол опережения впрыска. Износ нагнетательных элементов насоса высокого давления. Неправильная регулировка насоса высокого давления. Износ или повреждение распылителей. Слишком большое снижение давления впрыска. Загрязнен воздушный фильтр. Утечка топлива. Недостаточная компрессия.
Черный дымный выхлоп
Плохое смесеобразование в камере сгорания из-за нагара или неплотного закрытия клапанов. Поздний впрыск топлива. Плохое распыление топлива форсунками. Неверные зазоры в клапанах. Недостаточная компрессия.
Серый или белый дымный выхлоп
Неверное опережение впрыска. Недостаточная компрессия. Пробита прокладка головки блока. Переохлаждение двигателя.
Жесткая работа двигателя
Слишком ранний впрыск топлива. Большая разница между дозами топлива, впрыскиваемого в разные цилиндры двигателя. Неправильная работа некоторых форсунок. Недостаточная компрессия.
Перегрев двигателя
Неправильный угол опережения впрыска. Плохое распыление топлива форсунками (струя вместо «факела»).
Не развивается полная мощность двигателя
Короткий ход у педали акселератора, неправильно отрегулирована тяга педали акселератора. Загрязнен воздушный фильтр. Воздух в системе питания. Повреждены топливопроводы. Неисправны крепления распылителей (форсунок). Распылители неисправны. Сбит угол опережения впрыска топлива. Неисправен топливный насос высокого давления.
Повышенный расход топлива
Негермётична система питания. Забит топливопровод слива (от насоса к топливному баку). Высокие обороты холостого хода или же сбито опережение впрыска. Плохо работает двигатель. Неисправны распылители, неисправны форсунки. Неисправен топливный насос высокого давления.
Повышенный шум двигателя
Загрязнения в системе питания, вследствие чего не работают распылители. Уплотнительные шайбы под распылителями отсутствуют или плохо установлены, распылитель слишком сильно (слишком слабо) завернут в головку цилиндров. Воздух в системе питания.
Неравномерная работа двигателя на холостом ходу
Неправильно установлены обороты холостого хода. Затруднен ход педали акселератора. Ослаб топливопровод подачи топлива между топливным насосом высокого давления и топливным фильтром. Повреждена опорная пластина насоса высокого давления. Неисправности в подаче топлива. Неисправны распылители, неисправны форсунки. Неправильное опережение впрыска.
Колебания частоты оборотов коленчатого вала
Износ регулятора оборотов. Разрегулирование или износ системы впрыска. Чрезмерное сопротивление перемещению элементов в системе регулирования. Попадание воздуха в топливную систему. Избыточное давление газов в картере.
Внезапная остановка двигателя
Смещение угла опережения нагнетания (нарушение соединения насоса с приводом). Засорение топливного фильтра и нехватка топлива, подаваемого в насос. Отсутствие подачи топлива, вызванное повреждением топливного насоса высокого давления или подкачивающего насоса. Повреждение трубопровода впрыска. Износ и перекос поршня-разделителя, ротора или поршней насоса высокого давления.
Часто выходят из строя калильные свечи
Неисправны форсунки в соответствующих цилиндрах.
Невозможно заглушить двигатель
Неисправен запорный электромагнитный клапан.
Повышается уровень моторного масла в картере
Течь через уплотнитель цепного или шестеренчатого привода насоса высокого давления.
Слабое торможение двигателем
Засорены сливные топливопроводы. Неверно установлены ускоренные обороты холостого хода.
Система питания дизельного двигателя внутреннего сгорания
Назначение
Система питания в дизеле — это целый комплекс специальных устройств. Основной ее задачей является не только поступление топлива в инжекторные форсунки, но и обеспечение высокого давления при подаче. Система питания выполняет и другие важные функции:
- дозирование точно определенного количества топлива, учитывая нагрузку на двигатель в разные режимы работы;
- обеспечение эффективного впрыска топлива в фиксированный промежуток времени с необходимой интенсивностью;
- распыление и равномерное распределение горючего по всему пространству камеры сгорания в цилиндрах;
- предварительная фильтрация дизельного топлива перед подачей в насосы системы питания.
Система питания обеспечивает подачу очищенного топлива, а ТНВД (топливный насос высокого давления) дизельного двигателя сжимает его до нужного давления. Форсунки подают дизельное топливо в мелко распыленном виде в камеру сгорания
Схема устройства системы питания
В качестве примера приведена схема дизельного двигателя ЗMЗ-5143.10, устанавливаемого на автомобилях УАЗ с электрическим топливным насосом.
Основные элементы системы
Система питания дизельного двигателя состоит из основных и дополнительных элементов. Основные элементы — это: топливный бак, фильтры грубой и тонкой очистки дизельного топлива, топливоподкачивающий насос, ТНВД, инжекторные форсунки (через которые происходит впрыск топлива), трубопровод низкого давления, магистраль высокого давления и воздушный фильтр.
Дополнительные элементы могут быть различны. Среди них встречаются электрические насосы, выпуск отработавших газов, фильтры сажи и глушители. Система питания дизельного двигателя подразделяется на две группы в зависимости от устанавливаемой топливной аппаратуры: дизельная аппаратура топливоподводящая и воздухоподводящая.
В топливоподводящей аппаратуре, как правило, ТНВД и форсунки реализованы как отдельные устройства. Топливо подается в двигатель по магистралям высокого и низкого давления. В магистрали высокого давления ТНВД увеличивает давления для подачи и впрыска необходимой порции топлива в рабочую камеру сгорания.
Кроме ТНВД, в дизельном двигателе предусмотрен топливоподкачивающий насос. Он обеспечивает подачу топлива из топливного бака и пропускает горючее через фильтры тонкой и грубой очистки. Давление, создаваемое этим насосом, позволяет осуществить подачу топливо по трубопроводу низкого давления в ТНВД.
ТНВД дизельного двигателя осуществляет подачу топлива к инжекторным форсункам под высоким давлением. Подача зависит от порядка работы цилиндров дизельного мотора.
Дизельные форсунки расположены в головке блока цилиндров. Их основная задача — точное распыление горючего в камере сгорания. Предусмотрена также и дренажная система, которая выводит избытки подаваемого топлива и воздуха посредством отдельных трубопроводов. Форсунки бывают открытого и закрытого типов, но закрытый тип используется чаще. Сопла такой форсунки — это отверстие, закрываемое запорной иглой. Ключевой элемент форсунки — распылитель. Он получает одно или несколько сопловых отверстий, которые образуют факел в момент впрыска топлива.
Существует и система питания нераздельного типа, в котором ТНВД и инжекторная форсунка в своей совокупности представляют устройство насос-форсунка. Срок службы таких двигателей невелик, а создаваемый шум часто превышает заданные нормы.
Особенности системы питания турбодизеля
Система турбонаддува применяется как в дизельных, так и в бензиновых двигателях. Она предназначена для повышения их мощности без увеличения объема камеры сгорания. Топливоподводящая система в турбированных дизелях остается практически без изменений, а система подачи воздуха претерпевает существенные изменения.
Наддув происходит при помощи турбокомпрессора. Турбина потребляет энергию, выделяемую отработавшими газами. Воздух в турбокомпрессоре сжимается, охлаждается и подается в камеру сгорания дизельного двигателя. Величина этого давления классифицирует компрессоры по степени наддува (низкий, средний, высокий).
Инжекторные топливные системы
Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.
Рекомендуем: Устройство и принцип работы современного гидротрансформатора
Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.
В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.
Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.
Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:
- угол поворота дроссельной заслонки
- степень разрежения во впускном коллекторе
- частота вращения коленчатого вала
- температура всасываемого воздуха и охлаждающей жидкости
- концентрация кислорода в отработавших газах
- атмосферное давление
- напряжение аккумуляторной батареи
- и др.
Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:
- топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
- появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
- достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
- обеспечивается лучшая приемистость двигателя
- в отработавших газах содержится меньше вредных веществ
Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.
Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.
Особенности систем фильтрации для различных видов двигателей
Системы очистки топлива бензиновых двигателей
В системе питания карбюраторного мотора, после сетки в бензобаке, в магистрали дополнительно установлен фильтр-отстойник. После него горючее проходит сетку в топливном насосе, фильтр тонкой очистки (ФТО) и сетку в карбюраторе.
В бензиновых впрысковых моторах топливозаборник, фильтр грубой и средней очистки объединены с насосом в топливном модуле. Подающая магистраль заканчивается под капотом главным ФТО.
Фильтры грубой очистки
ФГО топливозаборников разборные, изготавливаются из латунной сетки на жестком каркасе.
Фильтры погружных топливных модулей формируются из двух-трёх слоёв полиамидной сетки, обеспечивая грубую и среднюю очистку топлива. Сетчатый элемент промывке или очистке не подлежит и при загрязнении заменяется новым.
ФГО-отстойники разборные. Установленный в металлическом корпусе цилиндрический фильтрующий элемент изготовлен из латунной сетки или набора перфорированных пластин, иногда из пористой керамики. В нижней части корпуса резьбовая пробка для слива осадка.
Фильтры-отстойники карбюраторных двигателей монтируются на раме или днище кузова машины.
Фильтры тонкой очистки
В легковых автомобилях фильтры этого типа устанавливаются под капотом. ФТО карбюраторного мотора — неразборный, в прозрачном пластмассовом корпусе, выдерживающем давление до 2 бар. Для подсоединения к шлангам на корпусе отлиты два патрубка. Направление потока указано стрелкой.
Степень загрязнения — и необходимость замены — легко определить по цвету видимого фильтрующего элемента.
ФТО впрыскового бензинового двигателя работает под давлением до 10 бар, имеет цилиндрический стальной или алюминиевый корпус. Крышка корпуса литая или из прочной пластмассы. Патрубки стальные, направление потока обозначено на крышке. Третий патрубок, установленный в крышке, соединяет фильтр с редукционным (переливным) клапаном, сбрасывающим излишки топлива в «обратку».
Изделие не разбирается и не ремонтируется.
Системы очистки для дизельных двигателей
Топливо, питающее дизельный двигатель, после сетки в баке, проходит через ФГО-отстойник, сепаратор-водоотделитель, ФТО, сетку насоса низкого давления и ТНВД.
В легковых автомобилях топливозаборник установлен на дне бака, ФГО, сепаратор и ФТО — под капотом. В дизельных грузовиках и тягачах все три устройства монтируются на раме в общем блоке.
Плунжерные пары подкачивающего насоса низкого давления и ТНВД, а также распылители форсунок дизельных моторов очень чувствительны к любым загрязнениям топлива и наличию в нём воды.
Попадание твёрдых абразивных частиц в прецезионные зазоры плунжерных пар вызывает их повышенный износ, вода смывает плёнку смазки и может вызвать задиры поверхностей трения.
Виды фильтров дизельного топлива
Сетка заборника топлива латунная или пластиковая, задерживает частицы грязи величиной более 100 мкм. Сетка может заменяться при вскрытии бака.
Фильтр грубой очистки дизтоплива
Все современные устройства разборные. Отсеивают загрязняющие фракции 50 и более микрон. Сменный элемент (стакан) с «бумажной» шторой или из нескольких слоёв пластиковой сетки.
Фильтр тонкой очистки
Очень высокая степень фильтрации, задерживает мелкодисперсные частицы величиной от 2 до 5 мкм.
Устройство разборное, со съёмным корпусом. Съёмный стакан современных устройств имеет штору из полиамидного волокна.
Съёмные корпуса изготавливаются из стали. Иногда в качестве материала корпуса применяется прочный прозрачный пластик. Под сменным элементом (стаканом) предусмотрена камера для накопления отстоя, в которой установлена сливная пробка или клапан. Крышка корпуса легкосплавная, литая.
В «навороченных» авто предусмотрена схема контроля за состоянием фильтра. Датчик, срабатывающий при переполнении камеры, включает на приборной панели красную контрольную лампочку.
При низких температурах растворённые в дизтопливе парафиновые углеводороды загустевают и, как кисель, забивают шторы фильтрующих элементов, препятствуя потоку топлива и останавливая двигатель.
В современных дизельных автомашинах фильтрующие устройства и водоотделитель устанавливаются в моторном отсеке или в едином блоке на раме, с обогревом антифризом от системы охлаждения.
С целью предупреждения «замерзания» солярки, на топливном баке могут устанавливаться электрические термоэлементы, работающие от бортовой сети.
Жесткая работа
Дизельный двигатель по своей природе изначально работает шумнее бензинового. Однако если вибрации усилились, скорее всего, произошел ранний впрыск топлива. Определение неисправности дизельного двигателя производится путем диагностики форсунок. Также проверяется уровень компрессии в цилиндрах. Минимальный ее уровень должен составлять 23 килограмма на сантиметр кубический. Разбег показателей между цилиндрами при этом не превышает 5-10 процентов. Среднестатистический дизельный мотор выдает порядка 27-30 «килограмм». Для определения используется специальный инструмент – компрессометр.
Предпусковой топливоподкачивающий насос
Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.
Предпусковой топливоподкачивающий насос
Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.
Схема топливной системы дизеля
Система подачи топлива дизельного двигателя имеет свои особенности. Во-первых, подача горючего в камеру сгорания осуществляется форсункой под колоссальным давлением. Собственно, за счет этого и происходит воспламенение смеси в цилиндрах. На инжекторных же двигателях смесь загорается при помощи искры, создаваемой свечой зажигания. Во-вторых, давление внутри системы образует ТНВД (топливный насос высокого давления).
То есть схема топливной системы (МАЗов и КамАЗов в том числе) такова, что для впрыска используются сразу два наоса. Один из них низкого давления, второй – высокого. Первый (его также называют подкачивающим) осуществляет подачу горючего из бака, а второй непосредственно занимается подачей топлива в форсунки.
Ниже представлена схема топливной системы (КамАЗ 5320):
Как видите, здесь используется гораздо больше элементов, чем на карбюраторных авто. Кстати, на некоторых модификациях КамАЗовских двигателей дополнительно устанавливают турбокомпрессор. Последний выполняет функцию снижения уровня токсичности отработавших газов и при этом повышает суммарную мощность ДВС. Такая схема топливной системы (КамАЗ 5320-5410) позволяет нагнетать горючее под более высоким давлением. При этом суммарный расход топлива остается на прежнем уровне.
Контроль исправности системы охлаждения
Система охлаждения необходима для создания и сохранения нормального температурного режима работы двигателя. В подавляющем большинстве современных автомобилей применяются жидкостные системы охлаждения с принудительной циркуляцией. Они включают следующие элементы:
- радиатор с заливной горловиной;
- вентилятор радиатора;
- жалюзи радиатора;
- трубопроводы, магистрали, краны;
- рубашка охлаждения ДВС;
- расширительный бачок;
- термостат;
- водяной насос (помпа).
Неисправности системы охлаждения двигателя могут повлечь его переохлаждение или перегрев. Под переохлаждением понимается снижение рабочей температуры до 70 градусов и ниже, что влечет перерасход топлива и падение мощности. Перегрев, то есть превышение порога в 100 градусов, также чреват падением мощность, может вызвать разгерметизацию (прорывы пара), а при длительной эксплуатации перегретого ДВС – заклинивание последнего.
Диагностика системы охлаждения включает проверку герметичности, контроль температурных точек срабатывания термостата, включения вентилятора и поворота жалюзи. Проверяется интенсивность циркуляции жидкости, то есть производительность помпы, определяется необходимость чистки радиатора и магистральных деталей.
Тест на сжатие
Когда вы проводите тест на сжатие, вы контролируете давление сжатия, которое двигатель способен производить. Не беспокойтесь о фактическом показании давления — важны показания всех цилиндров. Если все показатели давления низкие, есть несколько вещей, которые могут вызвать это.
Как правило, это медленная скорость проворачивания коленвала, забитые воздушные фильтры, слабый стартер. Если все цилиндры показывают примерно один результат (в пределах 15%) сжатия, то проблем нет. Если показатели меняются, то есть проблема с этим цилиндром.
Для выполнения теста сжатия:
- Удалите все свечи накаливания. (Если двигатель не оснащён свечами накаливания, удалите все топливные форсунки).
- Отсоедините топливный соленоид. (Это предотвращает заливку цилиндров топливом во время испытания).
- Подключите зарядное устройство к аккумулятору. (Это гарантирует, что скорость проворачивания останется неизменным во время теста).
- Подключите инструмент для тестирования сжатия (TOR3003A или аналогичный).
Убедитесь, что нет пролива топлива и запустите двигатель. Проверните двигатель столько сколько потребуется для определения уровня сжатия. Считайте показания давления на манометре. Показания сжатия должны быть в пределах 15% от максимального до минимального по всем цилиндрам.
Основные положения
Дизельная силовая установка является двигателем внутреннего сгорания, поршневого типа, процесс смесеобразования в котором происходит внутри цилиндра, а воспламенение смеси осуществляется за счет сжатия. Этим агрегат отличается от бензинового, для воспламенения смеси которого, необходимо применение внешнего источника, искровую свечу, либо тепловой элемент.
Ещё один процесс, протекающий в двигателе, с отличаем от его собрата, является процесс смесеобразования. В бензиновом агрегате смесеобразование протекает за пределами цилиндра, в специальном устройстве, смешивающем бензин и воздух, затем перемещается в трубопровод и завершается в цилиндре, во время процессов впуска и сжатия.
Турбины
Большинство модификаций современных моторов используют дополнительные турбины, которые позволяют существенно повысить мощность силового агрегата. Отдельные силовые агрегаты оснащаются двумя, тремя и даже четырьмя такими турбинами. Использование таких небольших по объему нагнетателей позволяет одновременно улучшить показатели мощности и избавляет от характерной турбоямы, которая проявляется в существенной задержке ускорения при нажатии на педаль газа.
В то же время следует сказать, что наличие турбины может отрицательно сказаться на показателях надежности силового агрегата. Во время работы турбина может вращаться с высокой скоростью, и при этом на этот узел неизменно приходится повышенная нагрузка. Поэтому не редкость поломки, которые вызваны усталостью этого узла, а также использованием некачественного масла.
Основные виды технической реализации
Развитие шло двумя путями – от механических систем к электронным и от впрыска в ту зону, где ранее располагался карбюратор к индивидуальной подаче бензина как можно ближе к месту его горения.
Централизованный впрыск единственной форсункой (моновпрыск)
Версия впрыска в самое начало впускного коллектора, где поток ещё был общим для всех цилиндров двигателя, не была первой исторически, но с неё началось массовое серийное внедрение технологии.
Модуль центрального впрыска содержит:
- форсунку с электромагнитным клапаном;
- топливный насос, создающий относительно небольшое давление;
- регулятор давления с диафрагмой, клапаном и обратной магистралью слива;
- электронный блок управления и датчики.
Система существенно упрощала жизнь водителям за счёт стабильной работы и автоматического управления. Двигатели хорошо запускались, обладали более высокими характеристиками по расходу и токсичности по сравнению с карбюраторными. Но цена выросла, а проблемы с конденсацией топлива в коллекторе остались.
Распределение форсунок по цилиндрам
Значительно лучше смесеобразование происходило при выделении отдельной форсунки каждому цилиндру. Стало возможным организовывать впрыск индивидуально, перед самым началом впуска, что исключало конденсацию. В остальном структура системы не поменялась, эволюционировал лишь её технический уровень. Совершенствовались датчики, быстродействие процессора в блоке управления, алгоритмы программы. В основном прогресс был направлен на экологию и обслуживание появившихся каталитических нейтрализаторов на выпуске.
Механическое и электронное управление
Первые системы впрыска топлива использовали для управления механику и гидравлику. Воздушные расходомеры представляли собой пластину в потоке, отклонение которой меняло управляющее давление. Далее сложный механизм дозатора-распределителя отмерял нужное количество топлива в зависимости от положения дросселя и прочих входных параметров. Всё это работало недостаточно точно и эффективно.
Качественный скачок произошёл с появлением структуры, представляющей из себя классический компьютер в блоке управления, который собирал электрические сигналы от датчиков, оцифровывал их и подавал команды на исполнительные устройства. Входной информацией стали:
- массовый расход воздуха или абсолютное давление во впускном коллекторе;
- температуры воздуха и двигателя;
- скорость и фаза вращения коленчатого и распределительных валов;
- положение дроссельной заслонки;
- наличие детонационных процессов;
- полнота сгорания топлива по кислородному датчику на выхлопе.
Чем больше учитывалось информации и чем выше скорость её обработки, тем точнее регулировались режимы двигателя. Распределённый впрыск с электронным управлением и катализатором широко применяется и в настоящее время.
Прямой (непосредственный) впрыск
Идея непосредственного впрыска бензина в камеру сгорания существовала всегда, но с практической реализацией имелись сложности. Для впрыска в конце такта сжатия и правильного направления тонко распылённого бензина требовалось высокое давление и качественные форсунки. Усложнился и подорожал насос, теперь его функции распределились между подкачкой из бака и созданием давления порядка 100 атмосфер на входе форсунок. Возникли трудно решаемые проблемы с надёжностью и долговечностью дорогих приборов системы впрыска.
Дополнительно стали возникать вопросы, подобные тем, что ограничивают развитие дизельной техники. Пришлось бороться с детонацией, жёсткой работой, разрабатывать быстродействующие форсунки высокого давления, способные разделить впрыск на фазы в течении одного такта цилиндра. Из-за необходимости обязательного использования системы EGR, направляющей часть выхлопных газов обратно во впускной коллектор, появились сложности с очисткой коллектора и клапанов.
Тем не менее, использование прямого впрыска, особенно комбинированного, с дополнительными форсунками в коллекторе, в сочетании с турбонаддувом позволило существенно повысить экономичность двигателей. Заплатив за это сложностью и недолговечностью. К тому же новым моторам требовалось очень качественное горючее, что сразу заметили водители, покупающие автомобили с прямым впрыском на вторичном рынке и эксплуатирующие их вдали от брендовых заправок с гарантированно подходящим бензином.
Инжекторные топливные системы
Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.
Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.
В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.
Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.
Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:
- угол поворота дроссельной заслонки
- степень разрежения во впускном коллекторе
- частота вращения коленчатого вала
- температура всасываемого воздуха и охлаждающей жидкости
- концентрация кислорода в отработавших газах
- атмосферное давление
- напряжение аккумуляторной батареи
- и др.
Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:
- топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
- появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
- достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
- обеспечивается лучшая приемистость двигателя
- в отработавших газах содержится меньше вредных веществ
Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.
Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.