Современные внутренние шины

Требования безопасности ПУЭ

Система электропитания в идеале составляется по схемам, которые рекомендованы правилами устройства электроустановок (ПУЭ). В жилое помещение или на отдельный объект подключается силовой кабель, а уже последующая его разводка внутри здания обеспечивается с помощью распределительного щитка. Для удобства такой разводки и применяется нулевая шина. Проще говоря, такое устройство представляет собой усиленный проводник в контактной зоне по открытому типу. К нему подключаются нулевые проводники при помощи винтовых соединителей.

Распространенная конструкция шины — брусок прямоугольной формы, произведенный из прочного металла с характерной проводимостью: латунь, сплавы с медью.

Использование общей нулевой шины для подключения нуля и заземления приведет к замыканию. Стоит понимать отличие между разделением и объединением по типу PE и N.

Шина данных это система передачи информации в ПК

Шина данных это одна из самых важных шин, из-за необходимости которой собственно и формируется вся остальная система. Численность имеющихся у нее разрядов указывает на скорость и производительность обмена данными, кроме этого определяет наибольшее число выполняемых команд. Шина данных это устройство, которое передает данные всегда в двух направлениях.

  1. Центральный процессор
  2. Графический адаптер
  3. Система оперативной памяти (ОЗУ)

Но все-таки эти модули, даже в комплексе не будут выполнять тех функций, которые от них требуются. Для того, чтобы все компоненты функционировали как положено, среди них создается взаимосвязь, с помощью которой будет выполняться необходимые вычислительные и другие операции. Средства связи такого рода создают именно компьютерные системные шины. Следовательно, можно утверждать, что данный компонент является крайне необходимым элементом в компьютерном блоке.

Компьютерная шина

Компьютерная шина – это электронная магистраль предназначенная для передачи информации между функциональными модулями компьютера. Такими как: центральный процессор, графический адаптер, винчестер, ОЗУ и остальными устройствами. Данная система включает в себя некоторое количество других шин, в частности: шины адреса, шина данных, кстати их может быть несколько, и шина управления.

Основное деление компьютерных шин

Отличие шин друг от друга базируется на нескольких моментах. Главным признаком считается Первенствующим показателем является место расположения. Исходя из этого шины бывают следующих типов:

  1. Шины для создания магистральной связи между компонентами установленными внутри компьютерного блока, а именно: центральный процессор, оперативное запоминающее устройство, системная плата. В современных компьютерах она обозначается как — локальная шина.
  2. Шины служащие для подсоединения к системной плате периферийных гаджетов, таких, как: адаптеры, карты памяти, называются — внешними шинами.

По-большому счету, компьютерной шиной можно охарактеризовать практически всякое устройство, служащее для создания связи между двумя и более компонентами. Даже оборудование для подключения компьютера к сети Интернет в определенной степени считается системной шиной.

Одна из самых значимых устройств связи

Все действия выполняемые нами с помощью компьютера, будь то работа с документами или прослушивание музыкальных треков, компьютерные игры — все это возможно только благодаря процессору. Равным образом и процессор не может выполнять свои функции, не имея при этом магистральной связи с остальными значимыми компонентами осуществляющими полноценную работу компьютера. То есть, именно с помощью системной шины процессора организуется в одно целое комплекс устройств.

Производительность компьютера

Все основные компьютерные шины в зависимости от предназначения, делятся на несколько категорий:

  1. Адресные шины
  2. Шины управления
  3. Шины данных

У процессора может быть задействовано несколько системных трактов связи, при этом, как показала практика, наличие определенного количества шин увеличивает эффективность работы компьютера. Пропускная способность компьютерной шины в большей части определяет производительность ПК. Принцип ее действия заключается в определение скорости трансляции данных, передающихся с локальных устройств на другие вычислительные модули и обратно.

Системные шины в современных компьютерах

Стандартная локальная шина, разработанная ассоциацией VESA, получила компетентное признание в мире компьютерных технологий. Официальное ее название VL-Bus и она же является одной из самых популярных шин локального назначения со дня ее представления. Используя шину VL-Bus можно осуществлять 32-разрядную передачу информации между графическим адаптером и процессором либо винчестером.

Однако, такая магистраль связи не способна поддерживать корректную работу микропроцессора. Вследствие этого она встраивается в систему вместе с 16-разрядной шиной ISA, и таким образом выполняет функции дополнительного расширения.

Компьютерная шина, оперативка, центральный процессор и мосты

Примеры внутренних компьютерных шин

Параллельные

  • Проприетарная Asus Media Bus, использовалась на некоторых материнских платах ASUS с Socket 7 и представляла собой шину ISA в специфическом разъеме, размещенном в одну линию с разъемом шины PCI.
  • CAMAC для измерительных систем (instrumentation systems)
  • Extended ISA или EISA
  • Industry Standard Architecture или ISA
  • Low Pin Count или LPC
  • MicroChannel или MCA
  • MBus
  • Multibus для промышленных систем
  • NuBus или IEEE 1196
  • OPTi local bus, использовалась для ранних материнских плат для Intel 80486
  • Peripheral Component Interconnect или PCI, также PCI-X
  • S-100 bus или IEEE 696, использовалась в Altair и похожих микрокомпьютерах
  • SBus или IEEE 1496
  • VESA Local Bus или VLB или VL-bus, использовалась в основном на материнских платах для процессоров и была подключена непосредственно к выводам микропроцессора. Однако встречалась и реализация этой шины в сочетании с ЦПУ IBM BL3 (аналог i386SX) и ранними Pentium
  • VMEbus, VERSAmodule Eurocard bus
  • STD Bus для 8- и 16-битных микропроцессорных систем
  • Unibus
  • Q-Bus

Последовательные

  • 1-Wire
  • HyperTransport
  • I²C
  • PCI Express или PCIe
  • Serial Peripheral Interface Bus или шина SPI
  • USB, Universal Serial Bus, чаще используется как внешняя
  • FireWire, i.Link, IEEE 1394, чаще используется как внешняя
  • Direct Media Interface (DMI)
  • Intel QuickPath Interconnect или просто QuickPath (QPI)
  • SATA/SAS

Внешняя шина — данные

Внешняя шина данных выходит за пределы МП. Эти шины обеспечивают пропуск кодовой комбинации ( слова) на число разрядов, на которое рассчитан данный МП. У наиболее распространенных однокристальных МП ширина шины данных или магистрали составляет восемь разрядов. Связь внутри МП и с внешними устройствами осуществляется также с помощью шины адреса и шины управления.

Микросхемы представляют собой 16-битовый микропроцессор с 8-битовой внешней шиной данных ( центральное процессорное устройство с байтовым принципом организации) и предназначены для перевода аппаратных средств, построенных на К580ВМ80 и К580ВМ85, на программную среду К1810ВМ86 для повышения производительности. Различия состоят в изменении разрядности шины данных и соответствующих изменениях структуры и работы шинного интерфейса. БНЕзаме-нена линией состояния SSO, так как К1810ВМ88 может обращаться только к байтам и надобность в сигнале разрешения старшего байта шины SHE отпадает.

Как и процессор 8086, 80286 имеет 16-разрядную внешнюю шину данных и 6-байтный конвейер команд. Однако быстродействие процессора 80286 при тактовой частоте 12 5 МГц примерно в 6 раз выше, чем у 8086 с тактовой частотой 5 М Гц. Это достигается за счет усовершенствованной архитектуры и снижения количества тактов на одну команду.

Интегральная схема KJ810BM88 представляет собой 16-битовый микропроцессор с 8-битовой внешней шиной данных. Он предназначен прежде всего для перевода аппаратных средств, построенных на базе МП К580ВМ80 и К580ВМ85, на программную среду МП К1810ВМ86 с целью повышения производительности этих средств. Микропроцессоры ВМ86 и ВМ88 имеют аналогичную архитектуру и одинаковую систему команд. В ВМ88 сохранены 16-битовые общие и сегментные регистры, АЛУ для обработки 16-битовых операндов, сумматор для вычисления 20-битового физического адреса и средства поддержки многопроцессорных систем. Различия между этими двумя МП состоят в изменении разрядности шины данных и соответствующих изменениях структуры и работы шинного интерфейса.

Принцип двунаправленной, rj днных и алпеоа поелостав-передачи между внутренней и внеш — шин Данных и адреса., предосгав ней шинами данных ляя их в распоряжение внешних.

Буферы данных и буферы адреса обеспечивают связь центрального процессора с внешними шинами данных и адреса. Особенность буферов состоит в том, что в каждом разряде они используют логические элементы с тремя состо-яниями.

Промежуточное положение между 8-разрядными и обычными 16-разрядными занимают 16-разрядные МП с 8-разрядной внешней шиной данных. Они представляют собой специальные модификации обычных 16-разрядных МП и обладают практически той же вычислительной мощностью, но в них используются более дешевые аппаратные схемы управления шиной.

Обмен 8-разрядными командами и данными между микропроцессором и внешними устройствами производится по 8-разрядной внешней шине данных DO — D7 через буферный регистр данных, который может находиться в трех состояниях — О, 1 и с высоким выходным сопротивлением, т.е. когда он отключается от внешней шины данных.

Структурная схема однокристального МП.

Буферный регистр данных используется для временного хранения выбранного из памяти слова перед выдачей его во внешнюю шину данных. Его разрядность определяется количеством байтов информационного слова.

Типовая структура цифровой системы обработки сигналов.

Как показано в табл. 2.5, в 1986 г. были выпущено много новых ПЦОС-СБИС; некоторые из них снабжены 32-разрядными внешними шинами данных, а в некоторых предусмотрена возможность арифметической обработки с плавающей запятой. Хорошим показателем производительности ПЦОС-СБИС является время выполнения 1024-точечного комплексного быстрого преобразования Фурье ( БПФ), так как этот вид обработки весьма характерен для многих применений.

Обмен 8-разрядными командами и данными между микропроцессором и внешними устройствами производится по 8-разрядной внешней шине данных DO — D7 через буферный регистр данных, который может находиться в трех состояниях — О, 1 и с высоким выходным сопротивлением, т.е. когда он отключается от внешней шины данных.

Снаружи процессор представляет собой 32-битовое устройство. Внешняя шина данных к памяти является 64-битовой, удваивая количество данных, передаваемых в течение одного шинного цикла.

Обмен кодами между памятью команд, памятью данных, периферийными устройствами и МП осуществляется через двунаправленный буфер шины данных. Последний изолирует внешнюю шину данных от внутренней. Это позволяет упростить подключение к одной шине нескольких устройств.

Правила монтажа

В зависимости от выбранного типа устройства, монтаж осуществляется несколькими методами:

  1. Крепление на DIN-рейку. (через изоляторы либо непосредственно в элетрощиток).
  2. Монтаж через угловые изоляторы.
  3. Крепление в электрощитке.

Осуществление монтажа допустимо открытым либо закрытым способом:

  1. Открытый применяется в том случае, если есть шкаф, куда доступ посторонним будет ограничен. Монтаж осуществляется с видимой клеммной колодкой.
  2. Закрытый вариант монтажа применяется в том случае, если оборудование подключается к особо важным системам, к примеру, к силовой розетке электроустановок.

После любого варианта монтажа (открытого или закрытого) не должно быть доступа к токоведущим жилам, поскольку в генерирующей установке ноль глухо заземлен, а прикосновение к точке подключения смертельно опасно

При выборе шин стоит обратить внимание на производителя и цену устройства. Так, дешевые китайские шины при эксплуатации или даже в начале монтажа могут просто лопнуть

Шина нулевая является важнейшим конструкционным элементом сборных шин. Применяется она для подключения проводников заземления и нуля. Этот элемент применяется при обеспечении электросетей как переменного, так и постоянного тока.

Системная шина

Общая структурная схем ЭВМ.

Системные шины представляют собой набор соединительных проводников-линий, объединяющих одноименные выводы всех периферийных модулей. По каждой линии может быть передано значение одного разряда двоичного кода в виде уровней напряжения, соответствующих логическому нулю или логической единицы.

Системная шина служит для обеспечения связи между ЦП и различными периферийными устройствами и памятью машины. Шина содержит группы линий для передачи данных. Обычно этих линий в группе столько, сколько разрядов имеет машинное слово. Кроме того, име: ются адресные линии ( шина адресов), код на к торых определяет адреса ячеек памяти или внешних устройств, с которыми происходит обмен данными, и группа управляющих линий, с помощью которых задается управляющее действие ( например, передача данных в ЦП.

Системные шины представляют собой набор соединительных проводников — линий, объединяющих одноименные выводы всех периферийных модулей.

Системная шина включает: шину данных ( ШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода ( машинного слова) операнда, шину адреса ( ША), состоящую из проводов и схем сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства, шину управления ( ШУ), содержащую провода и схемы сопряжения для передачи инструкций ( управляющих сигналов, импульсов) во все блоки компьютера, и шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина служит для обеспечения связи между ЦП и различными периферийными устройствами и памятью машины. Шина содержит группы линий для передачи данных. Обычно этих линий в группе столько, сколько разрядов имеет машинное слово.

Системные шины представляют собой набор соединительных проводников — линий, объединяющих одноименные выводы всех периферийных модулей. По каждой линии может быть передано значение одного разряда двоичного кода в виде уровней напряжения. Обычно 0 3 и 2 4 В соответствуют лог. По роду передаваемой информации все линии разделены на три группы, образующие шину данных, шину адресов и шину управления. Так как рассматриваемый микропроцессор предназначен для обработки 8-разрядных двоичных чисел, то порты ввода или вывода тоже 8-разрядные.

Системная шина — основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Системная шина работает на частоте материнской платы, и это существенно снижает эффективное быстродействие компьютера. Наличие же backside — шины ускоряет обмен с кэш-памятью.

Системная шина ( магистраль) ISA была разработана специально для персональных компьютеров типа IBM PC AT и является фактическим стандартом. В то же время, отсутствие официального международного статуса магистрали ISA ( она не утверждена в качестве стандарта ни одним международным комитетом по стандартизации) приводит к тому, что многие производители допускают некоторые отклонения от фирменного стандарта.

Общая структурная схем ЭВМ.

Системные шины представляют собой набор соединительных проводников-линий, объединяющих одноименные выводы всех периферийных модулей. По каждой линии может быть передано значение одного разряда двоичного кода в виде уровней напряжения, соответствующих логическому нулю или логической единицы.

Системные шины реализуются на основе многопроводных магистралей. Каждому устройству на шине присваивается адрес и уровень приоритета. Чем ближе расположено устройство к центральному процессору на системной шине, тем выше его приоритет при обработке прерываний. Обычно оперативная память располагается в непосредственной близости от центрального процессора, благодаря чему она имеет самый высокий приоритет.

Системная шина ( системный интерфейс) состоит из шин адреса и данных, 28 управляющих линий, 10 линий заземления и 4 линий электропитания. Шина адреса имеет 24 линии, 4 из которых зарезервированы.

Системная шина состоит из восьмислойной печатной платы и установленных на ней семи разъемов СМП34С — 135 на 135 контактов каждый. Платы в конструктиве устанавливаются произвольно.

Как определить режим работы SATA жёсткого диска

Друзья, запустим тест нашего SSD подключенного к высокоскоростному порту SATA 3.0 (6 Гбит/с) SSD в программе AS SSD Benchmark, затем подключим его к порту SATA 2.0 (3 Гбит/с) и тоже проведём тест, затем сравним результат.

1. Тест последовательного чтения и записи;

2. Тест случайного чтения и записи к 4 Кб блоков;

3. Тест случайного чтения и записи 4 Кб блоков (глубина очереди = 64);

4. Тест измерения времени доступа чтения и записи;

Итоговый результат, запомним его.

В каком режиме будет работать жёсткий диск или твердотельный накопитель SSD новейшего интерфейса SATA III ( 6 Гбит/с), если его подсоединить к разъёму SATA II ( 3 Гбит/с)

Но вот ещё интересный вопрос, с какой скоростью работает наш SSD? Запускаем утилиту AS SSD Benchmark и проводим тест случайного и последовательного чтения, результат красноречив, скорость последовательного чтения и записи 265 МБ/с (чтение), 126 МБ/с (запись).

Скорость намного меньше, чем если бы наш твердотельный накопитель был бы подключен к высокоскоростному порту на материнской плате SATA 3.0 (6 Гбит/с)!

«Звезда»

Если каждая рабочая станция подключена непосредственно к центральному устройству, которым может служить маршрутизатор или же коммутатор, то это топология «звезда». «Шина» была с течением времени заменена именно этой технологией, так как она отличается более высокой производительностью и эффективностью. Данная технология предусматривает управление всеми движениями пакетов в сети непосредственно центральным устройством, а каждый компьютер через собственную сетевую карту подключается к данному коммутатору полностью отдельным кабелем.

В случае необходимости можно объединить в одно целое одновременно несколько сетей, использующих описываемую топологию, вследствие чего в результате получится конфигурация сети, имеющая древовидную топологию. Древовидная топология распространяется в крупных организациях, однако она отличается целым рядом своих особенностей и тонкостей реализации.

Топология «звезда» на сегодняшний день используется в качестве основы при построении практически всех локальных сетей, и, в частности, это является результатом целого ряда преимуществ данной технологии объединения компьютеров.

Шина — данные

Структура микропроцессорной системы.

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы.

Шина данных — это основная шина, ради которой и создается вся система. Количество ее разрядов ( линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд.

Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

Структурная схема МК подгруппы PIC16F8X.

Шина данных и память данных ( ОЗУ) — имеют ширину 8 бит, а программная шина и программная память ( ПЗУ) имеют ширину 14 бит. Такая концепция обеспечивает простую, но мощную систему команд, разработанную так, что битовые, байтовые и регистровые операции работают с высокой скоростью и с перекрытием по времени выборок команд и циклов выполнения. Двухступенчатый конвейер обеспечивает одновременную выборку и исполнение команды. Все команды выполняются за один цикл, исключая команды переходов.

Шина данных — эти сигналы обеспечивают двунаправленную шину данных для доступа к внешней памяти программ.

Структура шины микрокомпьютерной системы.

Шина данных предназначена для перемещения данных внутри компьютера, например между запоминающим устройством и процессором.

Шины данных, адреса, управлении и прерывания образуют системную шину, а показанная на рис. 19 схема — микропроцессорный модуль, который представляет собой мощную вычислительную систему. Данные по системной шине передаются одинаково у МП КМ1810ВМ87 и ЦП; сигналы состояния, адреса и данных полностью идентичны.

Шина данных работает в режиме двунаправленной передачи. Это означает, что по ней можно передавать слова в обоих направлениях, но, разумеется, не одновременно: требуется применение специальных буферных схем и мультиплексного режима1 обмена данными между микропроцессором и внешней памятью.

Шина данных — двунаправленная шина, по которой данные могут на правляться либо в микропроцессор, либо нз него ( на рнс. По такой шине данные невозможно одновременно передавать в обоих направлениях. Эти процедуры разнесены во времени в результате применения временного мультиплексирования.

Шина данных является двунаправленной, как частично и шина управления. От МП по ША передаются адреса соответствующих внешних устройств ( ВУ) и памяти. Объем адресуемой памяти колеблется от 64К до Ш слов с разрядностью от 8 до 32 бит.

Шина данных — двунаправленная, ибо каждый функциональный узел ( кроме ПЗУ) должен как принимать, так и передавать информацию.

Шина данных ( Д) включает в себя 16 двунаправленных линий для обмена 16-разрядными словами или байтами.

Системная шина — что это?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности – такое понятие, как “Системная шина”. Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных – данные, адреса – соответственно, адрес (устройств и ячеек памяти), управления – управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись “FSB”. Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как “Front-side bus” – то есть “передняя” или “системная”. И , на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе – нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая)

В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше

Кстати, надпись “O.C.” означает, буквально “разгон”, это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является . Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора – помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины – все это синонимы. Все разъемы материнской платы – видеокарта, жесткий диск, оперативная память “общаются” между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

ISA Bus

Это наиболее распространенный тип шины раннего расширения, который был разработан для использования в оригинальном IBM PC. В IBM PC-XT использовалась 8-битная конструкция шины. Это означает, что передача данных происходит по 8-битным блокам (то есть по одному байту за раз) по шине. Шина ISA работала с тактовой частотой 4,77 МГц.

Для IBM PC-AT на базе 80286 была анонсирована улучшенная конструкция шины, которая могла бы одновременно передавать 16-битные данные. 16-битная версия шины ISA иногда называется шиной AT. (AT-Advanced Technology)

Усовершенствованная шина AT также предоставила в общей сложности 24 адресных строки, что позволило адресовать 16 МБ памяти. Шина AT была обратно совместима со своим 8-битным предшественником и позволяла использовать 8-битные карты в 16-битных слотах расширения.

Когда он впервые появился, 8-битная шина ISA работала на скорости 4,77 МГц — столько же, сколько процессор. Улучшения, сделанные за эти годы, в конечном итоге позволили шине AT работать на тактовой частоте 8 МГц.

Итоги

Как мы видим, последовательные интерфейсы пришли в компьютерную индустрию всерьёз и надолго. Не за горами времена, когда такие почётные долгожители, как PCI, IDE(PATA), SCSI, совсем уйдут со сцены, ибо преемники – PCI Express, Serial ATA, Serial Attached SCSI – уже агрессивно отвоёвывают позиции у «старичков». В стане процессорных шин пока паритет – архитектура K8 компании AMD c организацией процессорной шины на основе HyperTransport уже зарекомендовала себя как удачное решение, но и компания Intel с «последней редакцией» параллельной шины FSB (QPB) чувствует себя довольно уверенно и не собирается от неё отказываться.

Что касается возможной войны технологий PCI Express и HyperTransport, то здесь не тот случай – уж слишком разные сферы применения уготованы разработчиками этим решениям. Для вторжения в сферу сверхбыстрых передач у PCI Express недостаточно пропускной способности (максимум 8 ГБ/с для х16 против 41 ГБ/с у HyperTransport). Что касается работы HyperTransport с периферийными контроллерами, то данная шина не обладает для этого достаточными возможностями протоколов в силу своего изначального предназначения – замены процессорной шины, первое упоминание о «горячем» подключении появилось лишь в спецификации HyperTransport 3.0, да и стандартом пока что не предусмотрено внешних разъёмов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector