Статистическая погрешность

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы – килограммы, объёма – кубические литры, времени – секунды, скорости – метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 106.

В простой линейке длина имеет единицу измерения – сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром – чтобы измерять температуру, гигрометром – чтобы определять влажность, амперметром – замерять уровень силы, с которой распространяется электрический ток.

Как определить класс точности электроизмерительного прибора, формулы расчета

Чтобы определить класс точности, необходимо взглянуть на его корпус или инструкцию пользователя, в ней вы можете увидеть цифру, обведенную в круг, например, ① это означает, что ваш прибор измеряет величину с относительной погрешностью ±1%.

Но что делать если известна относительная погрешность и необходимо рассчитать класс точности, например, амперметра, вольтметра и т.д. Рассмотрим на примере амперметра: известна ∆x=базовая (абсолютная) погрешность 0,025 (см. в инструкции), количество делений х=12

Находим относительную погрешность:

Y= 100×0,025/12=0,208 или 2,08%

(вывод: класс точности – 2,5).

Следует отметить, что погрешность неравномерна на всем диапазоне шкалы, измеряя малую величину вы можете получить наибольшую неточность и с увеличением искомой величины она уменьшается, для примера рассмотрим следующий вариант:

Вольтметр с классом p=±2, верхний предел показаний прибора Xn=80В, число делений x=12

Предел абсолютной допустимой погрешности:

Относительная погрешность одного деления:

Если вам необходимо выполнить более подробный расчет, смотрите ГОСТ 8.401-80 п.3.2.6.

Какие классы точности бывают, как обозначаются

Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже

Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.

Приборы, способные выполнять множество различных замеров, могут быть одновременно более двух классов.

Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра ② означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.

  • 0,1, 0,2 – считается самым высоким классом
  • 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
  • 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков

Примечание. На корпусе высокоточных измерителей, класс может не наносится. Обозначение таких устройств как правило выполняется особыми знаками.

Что означает погрешность

Стандартный вид записи измеренной величины с погрешностью знаком всем. Например, результат взвешивания какого-то предмета может быть 100 ± 5 грамм. Это означает, что мы не знаем абсолютно точно массу, она может быть и 101 грамм, и 96 грамм, а может быть и все 108 грамм. Но уж точно не 60 и не 160 грамм. Мы говорим лишь, сколько нам показывают весы, и из каких-то соображений определяем тот примерный разброс, который измерение вполне могло бы дать.

Тут надо подчеркнуть две вещи. Во-первых, в бытовой ситуации значение 100 ± 5 грамм часто интерпретируется так, словно истинная масса гарантированно лежит в этом диапазоне и ни в коей мере не может быть 94 или 106 грамм. Научная запись подразумевает не это. Она означает, что истинная масса скорее всего лежит в этом интервале, но в принципе может случиться и так, что она немножко выходит за его пределы. Это становится наиболее четко, когда речь идет о статистических погрешностях; см. подробности на страничке Что такое «сигма»?.

Во-вторых, надо четко понимать, что погрешности — это не ошибки эксперимента. Наоборот, они являются показателем качества эксперимента. Погрешности характеризуют объективный уровень несовершенства прибора или неидеальности методики обработки. Их нельзя полностью устранить, но зато можно сказать, в каких рамках результату можно доверять.

Некоторые дополнительные тонкости, связанные с тем, что именно означают погрешности, описаны на странице Тонкости анализа данных.

Литература

  • Якушев А. И., Воронцов Л. Н., Федотов Н. М. Взаимозаменяемость, стандартизация и технические измерения. — 6-е изд., перераб. и доп.. — М.: Машиностроение, 1986. — 352 с.
  • Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др. Лабораторные занятия по физике. Учебное пособие / под ред. Гольдина Л. Л.. — М.: Наука. Главная редакция физико-математической литературы, 1983. — 704 с.
  • Назаров Н. Г. Метрология. Основные понятия и математические модели. — М.: Высшая школа, 2002. — 348 с. — ISBN 5-06-004070-4.
  • Деденко Л. Г., Керженцев В. В. Математическая обработка и оформление результатов эксперимента. — М.: МГУ, 1977. — 111 с. — 19 250 экз.
  • Рабинович С. Г. Погрешности измерений. — Ленинград, 1978. — 262 с.
  • Фридман А. Э. Основы метрологии. Современный курс. — Санкт-Петербург: НПО «Профессионал», 2008. — 284 с.
  • Новицкий П. В., Зограф И. А. Оценка погрешностей результатов измерений. — Л.: Энергоатомиздат, 1991. — 304 с. — ISBN 5-283-04513-7.

Абсолютная погрешность — измерительный прибор

Абсолютная погрешность измерительного прибора представляет собой расхождение ( разность) между измеренным Ли и действительным ( истинным) Лд значениями измеряемой величины ДЛ — / 4н — Ац. Истинное значение измеряемой величины находят с учетом поправки. Поправка — это величина, обратная по знаку абсолютной погрешности: ДР — ДЛ Ал-А. Абсолютная погрешность электроизмерительных приборов со стрелочным показателем практически неизменна в пределах всей шкалы, поэтому с уменьшением значения измеряемой величины она возрастает. Для повышения точности измерения измеряемой величины на показывающих приборах со стрелочным указателем следует выбирать такие пределы измерения, чтобы отсчитывать показания примерно в пределах 2 / 3 всей шкалы.

Абсолютная погрешность измерительного прибора равна разности между показанием прибора и действительным ( точным) значением измеряемой величины.

Абсолютная погрешность измерительного прибора определяется разностью между показанием прибора и истинным значением измеряемой величины. Погрешность показаний прибора имеет своими источниками погрешности отдельных его элементов: чувствительного элемента, передаточного механизма и шкалы. Погрешность чувствительного элемента заключается в том, что действительная зависимость его перемещений от измеряемой величины не совпадает с расчетной, заложенной в схему прибора. Погрешность шкалы складывается из ошибки положения ее штрихов и эксцентриситета шкалы.

Абсолютной погрешностью измерительного прибора называется разность между его показанием и истинным значением измеряемой величины. Так как истинное значение измеряемой величины установить нельзя, в измерительной технике используется так называемое действительное значение, полученное с помощью образцового прибора.

Абсолютной погрешностью измерительного прибора называется разность между его показанием и истинным значением измеряемой величины. Поскольку последнее установить нельзя, то в измерительной технике используют так называемое действительное значение, полученное посредством образцового прибора.

Абсолютной погрешностью измерительного прибора называется разность между его показанием и истинным значением измеряемой величины Так как величину истинного значения измеряемой величины установить нельзя, в измерительной технике используется так называемое действительное значение, полученное с помощью образцового прибора.

Приведенная погрешность измерительного прибора — отношение абсолютной погрешности измерительного прибора к нормирующему значению, выраженное в процентах.

Корректность поставленных экспериментов доказана отсутствием превышения абсолютных ошибок измерения как при определении перемещений, так и напряжений над абсолютной погрешностью используемых измерительных приборов.

В некоторых случаях ( для образцовых и рабочих средств измерений повышенной точности) для исключения систематической погрешности показаний вводят поправку, равную абсолютной погрешности измерительного прибора.

Абсолютная погрешность измерительного прибора определяется разностью между показанием прибора и действительным значением измеряемой величины.

В данном разделе будут рассмотрены виды погрешностей, свойственные мерам, отдельным элементам и устройствам, а также средствам измерений в целом. Под абсолютной погрешностью меры понимают разность ( отклонение от номинального значения) между номинальным значением меры и истинным значением воспроизводимой ею величины. Так как истинное значение величины остается неизвестным, то на практике вместо него используют действительное значение величины. Следует различать абсолютную погрешность измерительного преобразователя по входу и по выходу. Абсолютную погрешность измерительного преобразователя по входу находят как разность между значением величины на входе преобразователя, определяемой в принципе по истинному значению величины на его выходе с помощью градуировочной характеристики, приписанной преобразователю, и истинным значением величины на входе преобразователя. Абсолютную погрешность измерительного преобразователя по выходу находят как разность между истинным значением величины на выходе преобразователя, отображающей измеряемую величину, и значением величины на выходе, определяемой в принципе по истинному значению величины на выходе с помощью градуировочной характеристики, приписанной преобразователю. Относительная погрешность измерительного прибора определяется как отношение абсолютной погрешности измерительного прибора к истинному значению измеряемой им величины.

ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

При многократном измерении одной и той же величины каждый раз получают несколько отличающиеся результаты, как по абсолютной величине, так и по знакам, каким бы опытом не обладал исполнитель и какими бы высокоточными приборами он не пользовался.
Погрешности различают: грубые, систематические и случайные.
Появление грубых погрешностей (промахов) связано с серьезными ошибками при производстве измерительных работ. Эти ошибки легко выявляются и устраняются в результате контроля измерений.Систематические погрешностивходят в каждый результат измерений по строго определенному закону. Они обусловлены влиянием конструкции измерительных приборов, погрешностями градуировки их шкал, износом и т. д. (инструментальные погрешности)иливозникают из-за недоучета условий измерений и закономерностей их изменений, приближенности некоторых формул и др. (методические погрешности). Систематические погрешности делятся на постоянные (неизменные по знаку и вели чине) и переменные (изменяющие свою величину от одного измерения к другому по определенному закону).
Такие погрешности заранее определимы и могут быть сведены к необходимому минимуму путем введения соответствующих поправок.Например, заранее может быть учтено влияние кривизны Земли на точность определения вертикальных расстояний, влияние температуры воздуха и атмосферного давления при определении длин линий светодальномерами или электронными тахеометрами, заранее можно учесть влияние рефракции атмосферы и т. д.
Если не допускать грубых погрешностей и устранять систематические, то качество измерений будет определяться только случайными погрешностями. Эти погрешности неустранимы, однако их поведение подчиняется законам больших чисел. Их можно анализировать, контролировать и сводить к необходимому минимуму.
Для уменьшения влияния случайных погрешностей на результаты измерений прибегают к многократным измерениям, к улучшению условий работы, выбирают более совершенные приборы, методы измерений и осуществляют тщательное их производство.
Сопоставляя ряды случайных погрешностей равноточных измерений можно обнаружить, что они обладают следующими свойствами:
а) для данного вида и условий измерений случайные погрешности не могут превышать по абсолютной величине некоторого предела;
б) малые по абсолютной величине погрешности появляются чаще больших;
в) положительные погрешности появляются так же часто, как и равные им по абсолютной величине отрицательные;
г) среднее арифметическое из случайных погрешностей одной и той же величины стремится к нулю при неограниченном увеличении числа измерений.
Распределение ошибок, соответствующее указанным свойствам, называется нормальным (рис. 12.1).

Рис. 12.1. Кривая нормального распределения случайных погрешностей Гаусса

Разность между результатом измерения некоторой величины (l) и ее истинным значением (X) называют абсолютной (истинной) погрешностью.

Δ = l — X

Истинное (абсолютно точное) значение измеряемой величины получить невозможно, даже используя приборы самой высокой точности и самую совершенную методику измерений. Лишь в отдельных случаях может быть известно теоретическое значение величины. Накопление погрешностей приводит к образованию расхождений между результатами измерений и действительными их значениями.Разность суммы практически измеренных (или вычисленных) величин и теоретического ее значения называется невязкой. Например, теоретическая сумма углов в плоском треугольнике равна 180º, а сумма измеренных углов оказалась равной 180º02′; тогда погрешность суммы измеренных углов составит +0º02′. Эта погрешность будет угловой невязкой треугольника.
Абсолютная погрешность не является, полным показателем точности выполненных работ. Например, если некоторая линия, фактическая длина которой составляет 1000 м, измерена землемерной лентой с ошибкой 0,5 м, а отрезок длиною 200 м  – с ошибкой 0,2 м, то, несмотря на то, что абсолютная погрешность первого измерения больше второго, все же первое измерение было выполнено с точностью в два раза более высокой. Поэтому вводят понятие относительной погрешности:

Отношение абсолютной погрешности измеряемой величины Δ к измеренной величине l называют относительной погрешностью.

Относительные погрешности всегда выражаются дробью с числителем, равным единице (аликвотная дробь). Так, в приведенном выше примере относительная погрешность первого измерения составляет

,

а второго 

Оценка погрешности при прямых измерениях

При прямых измерениях искомая величина определяется непосредственно по отсчетному устройству (шкале) средства измерения. В общем случае измерения проводятся по определённому методу и при помощи некоторых средств измерений. Эти компоненты несовершенны и вносят свой вклад в погрешность измерения. Если тем или иным путём погрешность измерения (с конкретным знаком) удаётся найти, то она представляет собой поправку, которую просто исключают из результата. Однако достичь абсолютно точного результата измерения невозможно, и всегда остаётся некоторая «неопределённость», которую можно обозначить оценив границы погрешности. В России методики оценки погрешности при прямых измерениях стандартизированы ГОСТ Р 8.736-2011 и Р 50.2.038-2004.

В зависимости от имеющихся исходных данных и свойств оцениваемых погрешностей используют различные способы оценки. Случайная погрешность, как правило, подчиняется закону нормального распределения для описания которого необходимо указать математическое ожидание M{\displaystyle M} и среднеквадратическое отклонение σ.{\displaystyle \sigma .} В связи с тем, что при измерении проводится ограниченное число наблюдений, находят только наилучшие оценки этих величин: среднее арифметическое результатов наблюдений x¯{\displaystyle {\bar {x}}} и среднеквадратическое отклонение среднего арифметического Sx¯{\displaystyle S_{\bar {x}}}:

x¯=∑i=1nxin{\displaystyle {\bar {x}}={\frac {\sum _{i=1}^{n}x_{i}}{n}}}; Sx¯=∑i=1n(xi−x¯)2n(n−1).{\displaystyle S_{\bar {x}}={\sqrt {\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}{n(n-1)}}}.}

Доверительные границы ε{\displaystyle \varepsilon } полученной таким образом оценки погрешности определяются умножением среднеквадратического отклонения на коэффициент Стьюдента t,{\displaystyle t,} выбранный для заданной доверительной вероятности P{\displaystyle P:}

ε=tSx¯.{\displaystyle \varepsilon =tS_{\bar {x}}.}

Систематические погрешности в силу своего определения не могут быть оценены путем проведения многократных измерений. Для составляющих систематической погрешности, обусловленной несовершенством средств измерений, как правило известны только их границы, представленные, например, основной погрешностью средства измерения.

Итоговая оценка границ погрешности получается суммированием вышеприведённых «элементарных» составляющих, которые рассматриваются как случайные величины. Эта задача может быть математически решена при известных функциях распределений этих случайных величин. Однако, в случае систематической погрешности, такая функция как правило неизвестна и форму распределения этой погрешности задают как равномерную. Основная трудность заключается в необходимости построения многомерного закона распределения суммы погрешностей, что практически невозможно уже при 3—4 составляющих. Поэтому используются приближённые формулы.

Суммарную неисключённую систематическую погрешность, когда она состоит из нескольких m{\displaystyle m} компонентов, определяют по следующим формулам:

Θ∑=±∑i=1m|Θi|{\displaystyle \Theta _{\sum }=\pm \sum _{i=1}^{m}\left|\Theta _{i}\right|} (если m<3{\displaystyle m<3});
Θ∑(P)=±∑i=1mΘi2{\displaystyle \Theta _{\sum }(P)=\pm {\sqrt {\sum _{i=1}^{m}\Theta _{i}^{2}}}} (если m⩾3{\displaystyle m\geqslant 3}),
где коэффициент k{\displaystyle k} для доверительной вероятности P=,95{\displaystyle P=0{,}95} равен 1,1.

Суммарная погрешность измерения, определяемая случайной и систематической составляющей, оценивается как:

Δ=KSx¯2+Θ∑23{\displaystyle \Delta =K{\sqrt {S_{\bar {x}}^{2}+{\frac {\Theta _{\sum }^{2}}{3}}}}} или Δ=KSx¯2+(Θ∑(P)k3)2{\displaystyle \Delta =K{\sqrt {S_{\bar {x}}^{2}+\left({\frac {\Theta _{\sum }(P)}{k{\sqrt {3}}}}\right)^{2}}}},
где K=ε+Θ∑Sx¯+Θ∑3{\displaystyle K={\frac {\varepsilon +\Theta _{\sum }}{S_{\bar {x}}+{\frac {\Theta _{\sum }}{\sqrt {3}}}}}} или K=ε+Θ∑(P)Sx¯+Θ∑(P)k3.{\displaystyle K={\frac {\varepsilon +\Theta _{\sum }(P)}{S_{\bar {x}}+{\frac {\Theta _{\sum }(P)}{k{\sqrt {3}}}}}}.}

Окончательный результат измерения записывается какA±Δ(P),{\displaystyle A\pm \Delta (P),} где A{\displaystyle A} — результат измерения (x¯,{\displaystyle {\bar {x}},}) Δ{\displaystyle \Delta } — доверительные границы суммарной погрешности, P{\displaystyle P} — доверительная вероятность.

Как определять погрешность измерений (учебник Физика 10)

1. Как определять погрешности измерений.

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой их результатов.

Измерение — нахождение значения физической величины опытным путем с помощью средств измерений.

Прямое измерение — определение значения физической величины непосредственно средствами измерения.

Косвенное измерение — определение значения физической величины по формуле, связывающей ее с другими физическими величинами, определяемыми прямыми измерениями.

Введем следующие обозначения:

А, В, С, . — физические величины.

Апр — приближенное значение физической величины, т. е. значение, полученное путем прямых или косвенных измерений.

ΔА — абсолютная погрешность измерения физической величины.

ε — относительная погрешность измерения физической величины, равная:

ΔИА — абсолютная инструментальная погрешность, определяемая конструкцией прибора (погрешность средств измерения; см. табл. 1).

ΔА — абсолютная погрешность отсчета (получающаяся от недостаточно точного отсчета показаний средств измерения); она равна в большинстве случаев половине цены деления, при измерении времени — цене деления секундомера или часов.

Абсолютные инструментальные погрешности средств измерений

Средства измерения Предел измерения Цена деления Абсолютная инструментальная погрешность
1 Линейка
ученическая до 50 см 1 мм ± 1 мм
чертежная до 50 см 1 мм ± 0,2 мм
инструментальная (стальная) 20 см 1 мм ± 0,1 мм
демонстрационная 100 см 1 см ± 0,5 см
2 Лента измерительная 150 см 0,5 см ± 0,5 см
3 Измерительный цилиндр до 250 мл 1 мл ± 1 мл
4 Штангенциркуль 150 мм 0,1 мм ± 0,05 мм
5 Микрометр 25 мм 0,01 мм ± 0,005 мм
6 Динамометр учебный 4 Н 0,1 Н ± 0,05 Н
7 Весы учебные 200 г ± 0,01 г
8 Секундомер 0-30 мин 0,2 с ± 1 с за 30 мин
9 Барометр-анероид 720-780 мм рт. ст. 1 мм рт. ст. ± 3 мм рт. ст.
10 Термометр лабораторный 0-100 0 С 1 0 С ± 1 0 С
11 Амперметр школьный 2 А 0,1 А ± 0,05 А
12 Вольтметр школьный 6 В 0,2 В ± 0,15 В

Максимальная абсолютная погрешность прямых измерений складывается из абсолютной инструментальной погрешности и абсолютной погрешности отсчета при отсутствии других погрешностей:

Абсолютную погрешность измерения обычно округляют до одной значащей цифры (ΔА = 0,17 ≈ 0,2); числовое значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности (А = 10,332 ≈ 10,3).

Результаты повторных измерений физической величины А, проведенных при одних и тех же контролируемых условиях и при использовании достаточно чувствительных и точных (с малыми погрешностями) средств измерения, обычно отличаются друг от друга. В этом случае Апр находят как среднее арифметическое значение всех измерений, а погрешность ΔА (ее называют случайной погрешностью) определяют методами математической статистики.

В школьной лабораторной практике такие средства измерения практически не используются. Поэтому при выполнении лабораторных работ необходимо определять максимальные погрешности измерения физических величин. Для получения результата достаточно одного измерения.

Относительная погрешность косвенных измерений определяется так, как показано в таблице 2.

Формулы для вычисления относительной погрешности косвенных измерений

Формула для физической величины Формула для относительной погрешности
1
2
3
4

Абсолютная погрешность косвенных измерений определяется по формуле ΔА = Апрε (ε выражается десятичной дробью).

2. О классе точности электроизмерительных приборов.

Для определения абсолютной инструментальной погрешности прибора надо знать его класс точности. Класс точности γпр измерительного прибора показывает, сколько процентов составляет абсолютная инструментальная погрешность ΔиА от всей шкалы прибора (Amax):

Класс точности указывают на шкале прибора или в его паспорте (знак % при этом не пишут). Существуют следующие классы точности электроизмерительных приборов: 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Зная класс точности прибора (γпр) и всю его шкалу (Аmах), определяют абсолютную погрешность ΔиА измерения физической величины А этим прибором:

3. Как сравнивать результаты измерений.

1. Записать результаты измерений в виде двойных неравенств:

Источник

Δа = | a изм – а ист | ед. изм. (4)

Это
размерная, положительная величина, характеризующая отклонение измеренного от
истинного значений.

Относительная погрешность – это
отношение абсолютной погрешности к истинному значению измеряемой величины.

                                 
                                    (5)

Относительная
погрешность (5) – безразмерная величина, она измеряется в долях или процентах и
показывает какую часть от истинного значения измеряемой величины составляет
погрешность.

На
практике вместо неизвестного истинного значения используют среднее значение
измеряемой величины.

Формула (5) позволяет по
известной одной из характеристик определить другую. Часто вначале удобнее найти
относительную, а через неё абсолютную.

.

Если
измерение выполнено и погрешности определены, то окончательный результат
записывается в виде

        .                (6)

что эквивалентно заданию
интервала, в котором лежит истинное значение искомой величины. И чем уже данный
интервал, тем точнее измерения и наоборот.

4.
Вычисление погрешностей.

За
абсолютную погрешность однократно измеряемой величины применяют приборную
погрешность.

Для
простых измерительных и цифровых приборов приборная погрешностьравная
половине цены деления прибора.

                                         .                                                     (7)

Например:
приборная погрешность

                  
миллиметровой линейки (с=1 мм/дел) равна, Δапр
=  0,5 мм.

                  
штангенциркуля (с=0,05 мм/дел) – Δапр
= 0,025 мм.

                   эл.
секундомера (с=0,001 с/дел) – Δапр
= 0,0005 с.

Для
стрелочных электроизмерительных приборов приборная погрешность определятся
через класс точности прибора (характеристика прибора указанная на его
шкале).

                                              ,                                               
(8)

представляющая
собой отношение приборной погрешности к максимальному значению измеряемой
прибором величины. Из (8) для приборной погрешности стрелочных
электроизмерительных приборов получаем:

                                
ΔАприб. = 0,01 · К · Аmax
.                  
                          (9) 

Часто
в расчетах приходится использовать физические и математические постоянные,
которые как правило выражаются сложными десятичными дробями

(π=
3.141593… , е = 2.718282… , с = 2.99792… · 108 м/с

 qe =
1,60219… · 10-19 Kл , mе =
1.67265… · 10-31к2    и т.д.). 

При
использовании постоянных мы вынуждены их округлять т.е. брать приближённые
значения, это также даёт вклад в погрешность. К погрешностям табличных величин
относятся так же как и к приборным.

За
погрешность табличной величины принимают половину  единицы последнего разряда
табличной величины, выбранной с заданной точностью.

Например; при определении
плотности тела цилиндрической формы необходимо использовать число π.
Предварительно оговаривается точность расчётов (например вычисления проводят с
точностью до        

четырёх  значащих цифр).
Тогда используемое число π и погрешность Δπ соответственно будут равны:

π =
3.142,     Δπ = 0.0005

и окончательная запись числа
π с погрешностью имеет вид:

б)
Погрешности многократно измеряемых величин.

Погрешности
многократных измерений в рамках линейной теории оцениваются по следующей схеме

30 Поверка и калибровка си. Определения. Правовые основы.

В
соответствии с законом РК «Об обеспечении
единства измерений» введе­ны следующие
понятия:

— поверка
средства измерений
 —
совокупность операций, выполняемых
органа­ми Государственной метрологической
службы (другими уполномоченными на то
органами, организациями) с целью
определения и подтверждения соответ­ствия
средства измерений установленным
требованиям;

— калибровка
средств измерений
 —
совокупность операций, выполняемых с
це­лью определения и подтверждения
действительных значений метрологических
характеристик и/или пригодности к
применению средства измерений, не
под­лежащего государственному
метрологическому контролю и надзору.

В
обоих случаях, как при поверке, так и
при калибровке, определяются метрологические
характеристики средств измерений,
причем часто по одной и той же методике,
называемой методикой
поверки
,
но на этом их сходство заканчивается. Различия
между этими понятиями
 имеют
более принципиальный характер.

Во-первых,
в сферах распространения ГМКиН могут
применяться только поверенные СИ, а
калиброванные — не могут.

Во-вторых,
поверке могут подвергаться только СИ
утверж­денного типа, то есть внесенные
в Государственный реестр СИ, а калибровке
— любые, в том числе нестандартизованные
и изготовленные в од­ном экземпляре.

В-третьих,
при поверке проверяется соответствие
СИ своему типу, внесенному в Государственный
реестр, тогда как при калибровке
опреде­ляются действительные
метрологические характеристики, которые
прибор име­ет на момент калибровки.

Если
при поверке СИ обнаружено его несоответствие
хотя бы одному пункту утвержденного
типа, средство измерений должно быть
забраковано. При калибровке этому СИ
будут приписаны новые значения
метро­логических характеристик.

Положительные
результаты поверки удостоверяются
поверительным клеймом или свидетельством
о поверке. Если средство измерений по
результатам поверки признано непригодным
к применению, оттиск поверительного
клейма и свиде­тельство о поверке
аннулируются и выписывается извещение
о непригодности или делаются соответствующие
записи в технической документации.

Результаты
калибровки удостоверяются калибровочным
знаком (клеймом), наносимым на средство
измерений, или сертификатом о калибровке,
а также, записью в эксплуатационных
документах. В соответствии с законом
РК «Об обеспечении единства измерений»
калибровка средств измерений является
процедурой добровольной и осуществляемой
по желанию владельца прибора с це­лью,
например, получения достоверных
результатов измерений, влияющих, в
конечном счете, на результаты труда.
ГМКиН на такие средства измерений не
распространяется.

Статистическая погрешность: чуть подробнее

Предположим, что ваш детектор может очень точно измерить какую-то величину в каждом конкретном столкновении. Это может быть энергия или импульс какой-то родившейся частицы, или дискретная величина (например, сколько мюонов родилось в событии), или вообще элементарный ответ «да» или «нет» на какой-то вопрос (например, родилась ли в этом событии хоть одна частица с импульсом больше 100 ГэВ).

Это конкретное число, полученное в одном столкновении, почти бессмысленно. Скажем, взяли вы одно событие и выяснили, что в нём хиггсовский бозон не родился. Никакой научной пользы от такого единичного факта нет. Законы микромира вероятностны, и если вы организуете абсолютно такое же столкновение протонов, то картина рождения частиц вовсе не обязана повторяться, она может оказаться совсем другой. Если бозон не родился сейчас, не родился в следующем столкновении, то это еще ничего не говорит о том, может ли он родиться вообще и как это соотносится с теоретическими предсказаниями. Для того, чтобы получить какое-то осмысленное число в экспериментах с элементарными частицами, надо повторить эксперимент много раз и набрать статистику одинаковых столкновений. Всё свое рабочее время коллайдеры именно этим и занимаются, они накапливают статистику, которую потом будут обрабатывать экспериментаторы.

В каждом конкретном столкновении результат измерения может быть разный. Наберем статистику столкновений и усредним по ней результат. Этот средний результат, конечно, тоже не фиксирован, он может меняться в зависимости от статистики, но он будет намного стабильнее, он не будет так сильно прыгать от одной статистической выборки к другой. У него тоже есть некая неопределенность (в статистическом анализе она так и называется: «неопределенность среднего»), но она обычно небольшая. Вот эта величина и называется статистической погрешностью измерения.

Итак, когда экспериментаторы предъявляют измерение какой-то величины, то они сообщают результат усреднения этой величины по всей набранной статистике столкновений и сопровождают его статистической погрешностью. Именно такие средние значения имеют физический смысл, только их может предсказывать теория.

Есть, конечно, и иной источник статистической погрешности: недостаточный контроль условий эксперимента при повторном измерении. Если в физике частиц этот источник можно попытаться устранить, по крайней мере, в принципе, то в других разделах естественных наук он выходит на первый план; например, в медицинских исследованиях каждый человек отличается от другого по большому числу параметров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector