Зубчатые передачи: виды и сферы применения

Общее определение

Значение передаточного отношения у кинематических схем рассчитывается по стандартному математическому выражению. Результат получается при проведении математической операции деления значения угловой скорости ведущего вала или шестерёнки, на такой же параметр ведомого вала. Вместо этих значений используют отношение их частот вращения.

Современные кинематические схемы реализованы с использованием следующих механических соединений:

  • с зубчатым зацеплением (в разных вариациях);
  • червячных;
  • фрикционных соединений;
  • с помощью цепей;
  • посредством специальных ремней;
  • планетарных соединений.

Передача вращения основана на двух физических принципах: с помощью силы трения, с использованием механизмов зацепления. В зависимости от решаемой задачи механизмы изготавливаются с замедлением и ускорением. Первые называются редукторами, вторые — мультипликаторами. Обе разновидности бывают одноступенчатыми, двухступенчатыми, многоступенчатыми.

Пространственное расположение осей определяет следующие виды механизмов:

  • параллельные (в них оба вала расположены параллельно друг относительно друга);
  • пересекающиеся (зацепление происходит посредством пересечения);
  • перекрещивающиеся механизмы (у них валы вступают в перекрестное зацепление).

Все типы механизмов бывают замедляющие и ускоряющие движение. Наиболее частое применение замедляющих конструкций объясняется более высокой скоростью используемых двигателей и необходимостью увеличить мощность выходного элемента кинематической схемы.

Таблица передаточных отношений является сводным документом. В ней приведены значения основных технических характеристик всех типов кинематических соединений.

В сводной таблице можно найти зависимость значения передаточного числа от допустимой мощности, которая передаётся конкретным видом соединения.

Ременная передача

Как и зубчатая она встречается очень часто. В зависимости от того, как располагаются валы и ремень, передача может быть:

  • Открытой.
  • Перекрестной.
  • Полуперекрестной.
  • Угловой.
  • Спаренной.
  • Ступенчатой.

Ремень может быть круглым, плоским, трапецеидальным.

Передаточное отношение в таких передачах находится в пределах 1:4, 1:5 и лишь в редких случаях может быть равно 1:8.

К положительным качествам ременной передачи следует отнести:

  • Простоту конструкции.
  • Возможность расположения обоих шкивов на большом расстоянии друг от друга (свыше 15 метров).
  • Бесшумность и плавность работы.
  • Защиту механизмов от перегрузок благодаря упругим свойствам ремня и его способности в определённые моменты проскальзывать по поверхностям шкивов.
  • Работу при больших угловых скоростях.

Недостатками передачи являются:

  • Удлинение ремней (их вытягивание) в процессе работы, то есть недолговечность.
  • Непостоянство передаточного числа, что объясняется неизбежным проскальзыванием ремня.
  • Достаточно большие размеры.

Типы редукторов

Все виды устроены по схожему принципу, разница заключается только в типе зубчатой передачи. Чаще всего встречаются цилиндрические, конические, глобоидные, комбинированные, червячные и планетарные, но последнее время конструкторы прибегают к комбинированным конструкциям, что позволяет совместить преимущества нескольких типов.

Конструкция разных типов позволяют передавать усилие между узлами, которые располагаются в различных площадях, будут они перпендикулярные (конический редуктор), параллельные (цилиндрический) или пересекающиеся валы (червячные).

Диапазон передаточного числа может разнится от в несколько единиц до нескольких тысяч, что зависит от количества ступеней. Сейчас наиболее распространены механизмы, при изготовлении которых используются нескольких ступеней. Это позволяет комбинировать несколько типов передач и добиться максимально эффективной работы. Рассмотрим основные типы.

Цилиндрический редуктор

Довольно популярные при разработке и производстве машин различного назначения. Эффективно выполняют свои функции при работе с мощными установками, при этом показывают высокий КПД, превышающий 90 %. Чаще всего используется при работе параллельных и сносных валов. Может применяться с различным количеством ступеней, от которых зависит передаточное число, оно может колебаться от 1,5 до 400.

Червячный редуктор

Имеют довольно простую конструкцию, из-за чего обрели широкую популярность. Одним из плюсов также является низкая стоимость в сравнении с аналогами. Количество ступеней обычно ограничивается одной или двумя. При этом диапазон передаточного числа червячного редуктора может находиться в диапазоне от 5 до 10000, которую можно рассчитать по специальной формуле. Недостатком этого типа является низкий КПД и ограниченные мощности силовых установок, с которыми он работает. Состоит из зубчатого колеса и цилиндрического, реже глобоидного, червяка в виде винта.

Планетарный редуктор

Особый тип, который выгодно отличается от аналогов, имея ряд преимуществ. Благодаря чему получил широкое распространение в тяжелом машиностроении. Конструкция этой модели позволяет добиться высокого передаточного числа при работе с мощнейшими силовыми установками. При этом его размеры могут быть значительно меньшими, чем габариты аналогов. Механизм назван планетарным, из-за специфического расположения конструкционных элементов, к которым относятся: сателлиты, водило, солнечная и кольцевая шестерни.

Передача усилия происходит через вал на солнечную шестерню, которая находится в зацепе со всеми сателлитами. В это время кольцевая шестерня находится в статичном положении. Модель отличается высоким КПД, и работой в диапазоне передаточного числа от 6 до 450.

Выбор типа узла всегда основывается на конструкционных требованиях к механизму, при этом выбором модели должен заниматься квалифицированный конструктор. Первое что нужно определить — какой тип передачи нужен, оптимальный размер механизма, рассчитать осевые нагрузи на валах и температурный режим работы.

От количества ступеней выбранного механизма напрямую зависит передаточное отношение. Одноступенчатые применяются для выполнения простых функций, обычно это червячный тип. Сейчас чаще можно встретить комбинированные типы передач, что позволяет значительно расширить функционал узла.

В качестве входных и выходных валов применяются стандартные прямые валы, изготовлены в форме тел вращения. От их качества напрямую зависит качество работы всего механизма, так как на них действуют множество внешних нагрузок различных типов.

Очень важно своевременно менять сальники и масло. Постоянные профилактические работы обеспечат стабильную работу и обезопасят от внезапных поломок

Для контроля уровня масла имеется специальное смотровое окно, что позволяет вовремя пополнять необходимый объем.

В целом, самостоятельно рассчитать передаточное число, подобрать подходящую модель и провести замену (ремонт) редуктора не составит труда. Главное соблюдать рекомендации специалистов и технические инструкции, указанные производителем.

Цепная передача

Многие автолюбители наслышаны про цепную передачу, которая по своей конструкции относится к гибким конструктивным элементам. В данном случае передаточное отношение можно рассчитать согласно упомянутому ранее расчеты зубчатых механизмов. Здесь ведущая и ведомая шестерни представляют собой ничто иное, как колесо с зубьями. Примечательно, что у этой конструкции максимальное значение доходит до 15. Также стоит отметить, что для этого механизма необходимо обязательное небольшое провисание самой цепи. Чтобы настроить показатели, необходимо воспользоваться соответствующим регулировочным винтом.

У такого варианта соединения есть сразу несколько характерных преимуществ, а именно предусматривается большая длина вращения. Для передачи мощности задействованы сразу несколько звеньев, а кроме того, при монтировании редко допускаются ошибки из-за простоты устройства. Если говорить про недостатки, то он здесь один, а именно довольно быстрый износ рабочих компонентов. Также для полноценной работы требуется определенное количество смазки. Еще один минус, который подмечают лишь некоторые автомобилисты, это повышенный уровень шума.

Если в полной мере рассматривать цепную передачу, то здесь также нельзя оставить без внимание такой показатель, как статистическая разрушающая сила. Этот показатель напрямую зависит от необходимого коэффициента безопасности

Как правило, производители в этой ситуации задают значение от 6 до 10 единиц. При таких обстоятельствах, конструкция отличается долговечностью, надежностью всех соединений, а также качеством выполняемой работы.

Механизм передачи с внешним зацеплением

Такая передача снабжается двойными сателлитами, которые входят в зацепление только с двумя солнечными шестернями, одна соединяется с ведущим валом, а вторая — с ведомым.

Главные достоинства:

  • универсальность использования
  • малые размеры и вес при получении больших передаточных чисел
  • возможность изменения передаточных чисел без остановки ведущего и ведомого валов, на ходу трактора
  • большой срок службы, так как все шестерни в постоянном зацеплении друг с другом и работают в масле.

Для остановки планетарной передачи используют ленточные тормоза, а для соединения частей друг с другом, блокирования — дисковые муфты сцепления.

Планетарные механизмы из-за преимуществ начинают шире применять на тракторах для изменения передаточных чисел силовой передачи на ходу при помощи увеличителя крутящего момента, для поворота гусеничного трактора и в механизме независимого привода вала отбора мощности.

Обзор передач

На сегодняшний день существуют такие виды механических передач:

  • Зубчатые.
  • Ременные.
  • Фрикционные.
  • Червячные.
  • Цепные.
  • Храповые.
  • Волновые.

В целом же, механические передачи разделяются по таким критериям:

  • В зависимости от передачи движения от ведущего звена к ведомому: передачи трением и передачи зацеплением.
  • В зависимости от соотношения скоростей ведомого и ведущего звеньев: замедляющие передачи (они же редукторы), ускоряющие передачи (мультипликаторы).
  • В зависимости от расположения осей валов: передачи с перекрещивающимися, пересекающимися и параллельными осями.

Стоит указать, что замедляющие передачи на практике применяются гораздо чаще, нежели ускоряющие. Этот факт объясняется тем, что скорости вращения двигателей зачастую гораздо выше требуемой скорости вала исполнительного механизма или машины.

Технические характеристики

Редуктора отличаются внешне по размерам и форме. Внутреннее строение разнообразное. Объединяет их всех перечень технических характеристик, по которым они подбираются на различные машины и станки. К основным параметрам редуктора относятся:

  • передаточное число;
  • передаточное отношение;
  • значение крутящего момента редуктора;
  • расположение;
  • количество ступеней;
  • крутящий момент.

Передаточное число берется общее, всех передач, и одновременно указывается таблица передаточных чисел, если узел имеет 2 и более ступени. По нему подбирают узел, который преобразует вращение электродвигателя или мотора с нужное количество оборотов.

При этом важно знать величину крутящего момента на выходном валу редуктора, чтобы определить, будет ли достаточной мощность, чтобы привести в движение агрегат

Передаточное число

Основная характеристика зубчатого зацепления, по которой определяются все остальные параметры. Показывает, на сколько оборотов меньше делает колесо относительно шестерни. Формула передаточного отношения:

U = Z2/Z1;

где U – передаточное число;

Z1 число зубьев шестерни;

Z2 число зубьев зубчатого колеса.

Модуль зубьев шестерни и колеса одинаковый. Их количество напрямую зависит от диаметра. Поэтому можно использовать формулу:

U = D2/D1;

Где D2 и D1 диаметры колеса и шестерни соответственно.

Расчет общего передаточного момента определяется как произведение передаточных чисел всех пар:

Uр = U1× U2× … × Un;

Где Uр передаточное число;

U1, U2, Un передаточные числа зубчатых пар.

При расчете передаточного числа берется отношение количества зубьев колеса и заходов червяка.

В цепных передачах расчет передаточного числа делается аналогично, по количеству зубьев на звездочках и по диаметрам деталей.

При определении передаточного числа ременной пары количество зубьев заменяется диаметрами шкивов и все умножается на коэффициент скольжения. В отличие от зубчатой передачи, линейная скорость движения крайних точек на шкивах не равна друг другу. Зацепление не жесткое, ремень проскальзывает. КПД передачи ниже, чем у зубчатой и цепной передачи.

Передаточное отношение

При проектировании нового узла с заранее заданными характеристиками, за основу берется мощность будущего редуктора. Она определяется по величине крутящего момента:

где U12 – передаточное отношение;

W1 и W2 – угловые скорости;

n1 и n2 – частота вращения.

Знак «–» указывает на обратное направление вращения колеса и вала, на котором оно находится. При нечетном количестве передач ведомое колесо крутится в противоположном направлении по отношению к ведущему, навстречу ему. При четном количестве зацеплений конических колес вращение обоих валов происходит в одном направлении. Заставить его крутится в нужную сторону можно установкой промежуточной детали – паразитки. У нее количество зубьев как у шестерни. Паразитка изменяет только направление вращения. Все остальные характеристики остаются прежними.

Крутящий момент

Определение крутящего момента на валу необходимо, оно позволяет узнать мощность на выходе редуктора, величины связаны прямо пропорциональным соотношением.

Крутящий момент входного двигателя на входе, умножается на передаточное число. Для получения более точного фактического значения надо умножить на значение КПД. Коэффициент зависит от количества ступеней и типа зацепления. Для прямозубой конической пары он равен 98%.

Определение передаточных отношений простейших планетарных и дифференциальных передач

Планетарными называются передачи, в которых оси одного или нескольких колес закреплены в подвижном звене – водиле.

Любая планетарная передача состоит из трех групп элементов. Первая группа – центральные колеса (колеса, расположенные на неподвижных осях), вторая группа – сателлиты (колеса, расположенные на подвижном звене – водиле) и третья группа – водила.

На рис. 237 показана схема передачи, состоящей из центрального колеса 1, сателлита 2 и водила H.

В общем случае центральное колесо и водило могут получать вращение от двух источников независимо друг от друга. Такая передача имеет две степени свободы и называется дифференциальной.

Если закрепить центральное колесо, то получается передача с одной степенью свободы – движение можно передавать либо от водила к сателлиту, либо от сателлита к водилу – такая передача называется простой планетарной (рис. 238).

Чтобы в процессе решения задач глубже проанализировать кинематику планетарных передач, целесообразно не пользоваться готовыми выведенными в учебниках формулами, а применять метод сложения двух движений.

Сателлиты планетарных передач совершают сложное вращательное движение. Движение сателлитов относительно Земли (относительно неподвижной системы координат) складывается из вращения их вместе с водилом – переносного движения и вращения их вокруг осей, закрепленных в водиле, – относительного движения.

Метод сложения двух движений можно распространить и на центральные колеса. Так, например, закрепленное центральное колесо простой планетарной передачи можно считать вращающимся вместе с водилом и одновременно поворачивающимся на их общей оси в обратную сторону с такой же скоростью, что и водило.

Поэтому метод, который подробно изложен в решениях задач, включает следующие четыре этапа:

1. Мысленно закрепляем все колеса на водиле и придаем ему вращение с угловой скоростью водила относительно его собственной неподвижной оси – получаем первое движение.

2. Освобождаем колеса от водила. Водило мысленно закрепляем (превращаем планетарную передачу в обычную зубчатую передачу с неподвижными осями) и поворачиваем центральное колесо с угловой скоростью -(nH-nц), т. е. с угловой скоростью, равной разности абсолютных скоростей водила и центрального колеса, но в обратную сторону относительно направления вращения водила. В результате этого движения центрального колеса все остальные колеса передачи получают соответствующие угловые скорости, определяемые при помощи передаточных отношений. Так получается второе движение.

3. Угловые скорости всех элементов передачи, получившиеся в первом и втором движениях, складываем.

4. Из получившихся в результате сложения действительных зависимостей между угловыми скоростями определяем неизвестные в задаче величины.

Введем такие обозначения:

n1, n2, n3, … (или ω1, ω2, ω3, …) – угловые скорости, выраженные в об/мин (рад/сек) у зубчатых колес (центральных или сателлитов), дифференциальных передач, индексы соответствуют нумерации колес; nH (или ωH) – угловая скорость водила в дифференциальной передаче.

Угловые скорости колес или водила в простой планетарной передаче (с закрепленным колесом) обозначим теми же буквами, но с верхними индексами в скобках, соответствующих закрепленному колесу, например n2(1) (или ω2(1)) – угловая скорость второго колеса при закрепленном первом; nH(1) – угловая скорость водила при закрепленном первом и т. д.

Аналогично обозначим и передаточные отношения:

i12(H) – передаточное отношение от колеса 1 к колесу 2 при неподвижном водиле;

i2H(1) – передаточное отношение от колеса 2 к водилу при неподвижном первом колесе;

i1H – передаточное отношение от колеса 1 к водилу в дифференциальной передаче и т. д.

При решении задач с планетарными передачами необходимо очень внимательно следить за правильностью определения знаков передаточных отношений между отдельными элементами передачи. Правило знаков передаточных отношений приведено в § 39.

Задача 201. Определить передаточное отношение от сателлита 2 к водилу H для простой планетарной передачи, показанной на рис. 238, если числа зубьев…

Задача 202. Определить передаточное отношение от колеса 2 к водилу H простой планетарной передачи с закрепленным колесом внутреннего зацепления (рис. 239),…

Задача 204. Определить передаточное отношение iH1(3) для простой планетарной передачи, показанной на рис. 241, если числа зубьев…

Задача 205. Определить угловую скорость водила H и колеса 2 дифференциального зубчатого механизма (рис. 242), если число зубьев колес z1=18,…

Червячная передача

Так как при определенных обстоятельствах вращательные движения выполняются под углом, то здесь требуется соответствующая система. В данном случае речь идет про червячную передачу. Как правило, главным элементом такой схемы выступает компонент цилиндрической формы. Кроме того, могут использоваться глобоидные механизмы, архимедов винт или эвольвентные изделия. В частности, это напрямую зависит от текущей поверхности, где расположилась резьба, а также от типа применяемой резьбы. В данном случае для вычисления передаточного отношения здесь используется число заходов всего червячного механизма. Как правило, этот показатель варьируется от единицы до четырех. Для того, чтобы высчитать необходимое число компонентов зацепления, здесь нужно использовать таблицу передаточных отношений для схемы червячного типа. В этой таблице собраны оптимальные данные, которые позволяют правильно подобрать правильное соединение для определенного изделия.

Необходимо принимать во внимание тот факт, что для червячной передачи присущи некоторые характерные недостатки. В частности, в процессе работы конструктивные элементы сильно нагреваются

В процессе работы может проявляться эффект проскальзывания. Существенный минус такой передачи в низком коэффициенте полезного действия. Червячные передачи не отличаются высокой надежностью. При работе могут появляться заедания, а также затормаживание. Из-за большого числа недостатков подобные механизмы в современном автомобилестроении применяются достаточно редко.

Ременная передача

Данная конструкция является часто встречающейся. Её тип определяется расположением вала и направлением движения ремня. Их классифицируют следующим образом:

  • открытого типа;
  • перекрестной формы;
  • ступенчатой системы;
  • угловой.

Для повышения надёжности применяют спаренное соединение. Реализация подобных конструкций производится с помощью ремней различного сечения. Наиболее популярными являются три типа: прямоугольные, в форме трапеции, круглого сечения.

Значение передаточного отношения рассчитывается подстановкой в классическую формулу скоростей вращения ведущего и ведомого валов. Иногда в расчёте используют число оборотов каждого из валов. В качестве альтернативного варианта при расчёте этого параметра используются величины диаметров (радиусов) шкивов.

Влияние передаточного числа на динамику

Передаточное число – величина вычисляемая, она находится отношением числа зубьев ведомой шестерни к количеству ведущей. Чем выше это значение, тем двигатель быстрее накрутит нужное количество оборотов и разгонит автомобиль более стремительно. «Супер!», — скажете вы, но ошибетесь в главном – максимум скорости в этом случае будет меньшим, а переключать передачи вам придется намного чаще. Поэтому производители придерживаются средних значений передаточных чисел КПП, создавая многоступенчатые конструкции.

Сначала конструкции КПП содержали 3 вала, где 3-я передача являлась прямой и позволяла достигать предельной скорости. Последующая же регулировка скорости сводилась к уменьшению оборотов двигателя через подачу топлива, в этом случае эффект управления скоростью достигался, но терялась экономичность авто совершенно. Поэтому количество передач увеличили, и бывшая прямая третья стала четвертой или пятой, а далее достигла и более высоких ступней.

Передаточные числа механической коробки передач самой распространенной 5-скоростной КПП находятся в следующих диапазонах:

  • 1-я передача – от 3 до 4;
  • 2-я передача – от 2 до 2,9;
  • 3-я передача – от 1,2 до 1,9;
  • 4-я передача – от 0,9 до 1,2;
  • 5-я передача – от 0,7 до 0,9;
  • задний ход – от 3 до 4.

Если передаточные числа АКПП будут настроены неправильно, то комфорта от поездки за рулем добиться не удастся. А вот в АКПП передаточные числа при несбалансированности способны равномерное движение автомобиля превратить в езду на упрямом осле, сопровождающуюся постоянными рывками и необоснованно большим расходом топлива.

Оптимальными специалисты считают значения, расположенные близко друг к другу, тогда у автомобиля будет разгон без рывков при переключении скоростей. Такого дробления не удастся осуществить, если передач будет мало, поэтому чем больше передач – тем лучше для вашего комфорта при вождении. Особенно это касается машин с автоматом: если есть возможность выбора, то АКПП с 5-ю, 6-ю, 7-ю скоростями будет намного предпочтительнее 4АКПП. Здесь за вас скорости переключает автоматика, и чем чаще она будет это делать, тем быстрее выйдут из строя дорогостоящие механизмы.

Часто значения передаточных чисел указывают в характеристиках автомобиля. За этими цифрами стоит скрупулезный подбор производителем оптимальных значений. Каких-то идеальных величин, как при оценке других параметров, здесь не существует. Поэтому назвать одно значение плохим, а другое хорошим нельзя, так как коробки передач влияют на динамику машины, а тип вождения и предпочтения у владельцев авто зачастую кардинально различны, и сложно рассматривать КПП отдельно от всего «организма» машины. Все скоростные режимы и рекомендации завода-изготовителя формируются только после определения передаточных чисел, ибо они должны учитывать такие нюансы, как:

  • комфорт в управлении автомобилем, исключающий частое переключение передач как на механике, так и на автомате;
  • хорошие показатели динамики автомобиля;
  • все передачи должны работать слаженно, чтобы ни один режим поездки не выбивался из заданного ритма;
  • расход топлива должен быть нормальным и соизмерим заявленной литражности, перегазовок быть не должно;
  • длинная последняя передача способна разогнать авто до максимальной скорости;
  • должна быть полная совместимость двигателя и передаточных чисел.

Последний пункт поясним немного подробнее. Для каждого двигателя разработчики создают коробку с заданными передаточными числами, поэтому задумываясь о замене КПП, вариант неродной коробки даже не стоит рассматривать. С данной модификацией вы можете приобрести массу проблем. Если новая коробка взята от такого же двигателя, но более мощного, то вам гарантирован больший износ мотора и не слишком удобное переключение скоростей, но к этому со временем можно привыкнуть, а вот преждевременный износ двигателя – вещь малоприятная.

Не лучше ситуация получается и при обратной замене – коробку взяли из пары, где двигатель был слабее. Этой модификацией вы обделите себя по потенциалу машины и увеличите топливные затраты на поездку.

Таким образом, для полноценной работы автомобиля в нем должна располагаться родная трансмиссия. Но народные умельцы автомобильного тюнинга уже научились менять в машине передаточное число, используя новые шестерни в рядах и получая другие характеристики модели. Такие модификации часто проводят с автомобилями ВАЗ. Следствие этого — более интенсивный разгон автомобиля, но приходится жертвовать максимальной скоростью.

Передаточное число гоночных автомобилей также разительно отличается от серийных моделей, ибо перед ними стоят другие задачи эксплуатации.

Устройство механической коробки передач

Устройство механической КПП

Конструктивно механическая коробка передач состоит из следующих элементов:

  • ведущий или первичный вал;
  • ведомый или вторичный вал;
  • промежуточный вал (для 3-х вальной МКПП);
  • шестерни первичного и вторичного валов;
  • механизм выбора передач;
  • муфты синхронизаторов (синхронизаторы);
  • картер;
  • главная передача;
  • дифференциал.

При этом устройство и принцип работы двухвальной и трехвальной трансмиссии отличаются друг от друга.

Двухвальная коробка передач: устройство и принцип работы

Схема двухвальной МКПП

Этот тип коробки является наиболее распространенным. Крутящий момент от двигателя через муфту сцепления передается на первичный вал. В зависимости от конструкции конкретной коробки передач часть шестерней на первичном и вторичном валах жестко закреплены на них, а часть свободно вращаются. Также на каждом валу расположен минимум один синхронизатор. Шестерни первичного и вторичного валов находятся в постоянном зацеплении друг с другом. Понять, какие из них зафиксированы, а какие вращаются, очень просто: шестерни возле синхронизаторов всегда вращаются на валу.

Шестерня главной передачи жестко закреплена на ведомом валу. Крутящий момент от вторичного вала к колесам транспортного средства передают главная передача и дифференциал. Последний обеспечивает вращение колес с разной угловой скоростью.

Механизм выбора передач в двухвальной КПП расположен в корпусе коробки и состоит из вилок и штоков, перемещающих муфты синхронизаторов. Механизм оснащен защитой от одновременного включения двух передач.

Принцип работы двухвальной трансмиссии следующий:

  1. В нейтральном положении рычага переключения передач крутящий момента от двигателя не передается на ведущие колеса, шестерни на валах свободно прокручиваются.
  2. При перемещении рычага водитель перемещает муфту синхронизатора соответствующей вилкой через систему тросиков или тяг.
  3. Муфта синхронизирует угловые скорости соответствующей шестерни и вала, на котором расположен синхронизатор.
  4. Муфта синхронизатора входит в зацепление с шестерней и крутящий момент начинает передаваться с первичного вала на вторичныый.
  5. Происходит передача крутящего момента от двигателя на ведущие колеса с заданным передаточным числом.

Для движения задним ходом используется дополнительный вал с промежуточной шестерней заднего хода.

Схемы передачи крутящего момента на каждой из передач:

Нейтральное положение

1-я передача

2-я передача

3-я передача

4-я передача

5-я передача

Задний ход

Трехвальная КПП: устройство  и принцип работы

Отличие трехвальной механики от двухвальной в том, что здесь используются три вида валов. Помимо ведомого и ведущего также применяется промежуточный вал.

Первичный вал, соединенный со сцеплением, передает крутящий момент на промежуточный. Передача происходит через соответствующую шестерню — таким образом, валы находятся в постоянном зацеплении.

Устройство трехвальной МКПП

Промежуточный вал расположен параллельно первичному, все шестерни на нем жестко зафиксированы.

На одной оси с первичным расположен вторичный вал. За это отвечает упорный подшипник на ведущем валу, в который входит вторичный вал. При этом шестерни ведомого вала могут свободно вращаться и не имеют жесткой фиксации с валом. Шестерни вторичного вала находятся в постоянном зацеплении с шестернями промежуточного вала. Следовательно, в нейтральном положении КПП крутящий момент от первичного вала передается на промежуточный и далее на шестерни вторичного вала. Но поскольку они свободно вращаются на валу, автомобиль не двигается.

Между шестернями вторичного вала находятся синхронизаторы, работа которых заключается в выравнивании угловых скоростей шестерен вторичного вала с угловой скоростью самого вала за счет сил трения.

Синхронизаторы жестко закреплены на вале и за счет шлицевого соединения могут двигаться по нему в осевом направлении.

В отличие от двухвальной КПП, механизм переключения в трехвальной трансмиссии располагается на корпусе коробки и состоит из рычага управления и штоков с вилками. Механизм также оснащен блокирующим устройством для предотвращения одновременного включения двух передач.

Он может также иметь и дистанционное управление. При этом дистанционный механизм переключения обеспечивает кулиса или шарнирные тросы.

Принцип включения передач в трехвальной КПП аналогичен принципу работы двухвальной трансмиссии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector