Как проверить мосфет (полевик)

Ремонт телевизора 11Ak30A4, замена BU808 на аналог

Всем привет. Сегодня на ремонт привезли Rainford TV5555 с типичной неисправностью «не включается». При попытке включения, телевизор издает умирающий писк, после чего снова переходит в дежурный режим. Хозяин сказал, что несколько раз отвозил его к знакомому мастеру, после чего телевизор проработал не более года.

rainford TV5555

Сняв заднюю крышку, сразу в глаза бросается прикрученный дополнительный радиатор для BU808DF. В принципе, это не является чем-то новым, так как многие мастера добавляют такие радиаторы, чтобы уменьшить температуру строчного транзистора, которая порой может достигать 80 градусов. Я лично такого ни разу не делал, так как в этом не было необходимости.

Дополнительный радиатор BU808DF

Немного почистив плату от пыли, приступил к визуальному осмотру. Сразу увидел вздутый конденсатор C623 47мкф на 160в. Более никаких внешних особенностей на плате мною замечено не было.

Из остатков флюса на плате видно, что предыдущий мастер производил замену транзистора BU808DF и конденсатора C613 10мкф на 50в. Это было сделано правильно, так как севший с613 и является частой причиной «смерти» сточного транзистора.

Приступим к ремонту

Первым же делом я заменил C623 47мкф на 160в. Неисправность этого конденсатора могла вызывать плохую фильтрацию напряжения +B на строчник, что приводит к перегреву транзистора и помехам на изображении.Далее, прозвонил сам BU808DF. Как я и предполагал, он был пробитый. Переход коллектор-база показывал 450 Ом в обе стороны.Так как одну причину возможного выхода из строя строчного транзистора мы определили, я решил сразу проверить C613, и как оказалось не зря. Выпаяв конденсатор, подключил его к ESR метру. Результат был далеко не в пользу конденсатора, так как замеры показали, что его внутренне сопротивление составляет 16 Ом, а должно быть не более 1 Ома! С таким C613 шансов выжить у строчного транзистора не было вообще.

Завышенный ESR конденсатора

Заменить C613 я решил на конденсатор, номиналом 22 Мкф на 63в. После благополучной замены приступил к замене самого транзистора BU808DF.

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета – с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный – к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Как проверить транзистор, не выпаивая из схемы

Схема пробника для проверки транзисторов: R1 20 кОм, С1 20 мкФ, Д2 Д7А — Ж.

Выпаивание из схемы определенного элемента сопряжено с некоторыми трудностями – по внешнему виду сложно определить, какое именно из них необходимо выпаивать.

Многие профессионалы для проверки транзистора непосредственно в гнезде предлагают использовать пробник. Этот прибор представляет собой блокинг-генератор, в котором роль активного элемента играет сама деталь, требующая проверки.

Система работы пробника со сложной схемой построена на включении 2 индикаторов, которые сообщают – пробита цепь, или нет. Варианты их изготовления широко представлены в интернете.

Последовательность действий при проверке транзисторов одним из таких приборов, следующая:

  1. Сначала тестируется исправный транзистор, с помощью которого проверяют, есть генерация тока, или нет. Если генерация есть, то продолжаем тестирование. При отсутствии генерации меняются местами выводы обмоток.
  2. Далее проверяется лампа Л1 на размыкание щупов. Лампочка должна гореть. В случае, если этого не происходит, меняются местами выводы любой из обмоток трансформатора.
  3. После этих процедур начинается непосредственная проверка прибором транзистора, который предположительно вышел из строя. К его выводам подключаются щупы.
  4. Переключатель устанавливается в положение PNP или NPN, включается питание.

Свечение лампы Л1 свидетельствует о пригодности проверяемого элемента схемы. Если же начинает гореть лампа Л2, значит есть какие-то неполадки (скорее всего пробит переход между коллектором и эмиттером);

В случае если не горит ни одна из ламп, то это признак того, что он вышел из строя.

Существуют также пробники с очень простыми схемами, которые перед началом работы не требуют никакой наладки. Они характеризуются очень малым током, который проходит через элемент, подлежащий тестированию. При этом, опасность его вывода из строя практически нулевая.

К такой категории относятся приборы, состоящие из батарейки и лампочки (или светодиода).

Для проверки нужно последовательно выполнить такие операции:

  1. Подключить к наиболее вероятному выходу базы один из щупов.
  2. Вторым щупом поочередно касаемся каждого из оставшихся двух выводов. Если в одном из подключений контакта нет, тогда произошла ошибка с выбором базы. Нужно начинать сначала с другой очередностью.
  3. Далее советуют проделать те же операции с другим щупом (поменять плюсовый на минусовый) на выбранной базе.
  4. Поочередное соединение базы щупами разных полярностей с коллектором и эмиттером в одном случае должно зафиксировать контакт, а в другом нет. Считается, что такой транзистор исправный.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Как можно убедиться в работоспособности транзистора в схеме?

Каждый раз проверять работу элементов, применяя выпаивание их из схемы, сложно, в некоторых случаях это трудно сделать, по этой причине специалисты рекомендуют использовать пробник, который поможет проверить исправность транзистора.

Схема пробника (R1=20 кОм, C1= 20 мкФ, Д2-Д7 –ж):

Схема пробника (R1=20 кОм, C1= 20 мкФ, Д2-Д7 –ж)

Данный прибор является блокинг-генератором, проверка npn транзистора — это выполнение им задания активного устройства, индикаторы в сложной схеме показывают, пробит полупроводниковый прибор или нет. Есть много решений по изготовлению пробников, их варианты хорошо представлены в сети. Чтобы прозвонить триод, пошагово надо произвести следующие действия:

Проверяем работу пробника на исправном транзисторе, должна быть генерация, затем продолжаем тестировать пробник. Если генерации нет, надо поменять выводы обмоток местами

Обращаем внимание на Л1, лампу, работающую на размыкание щупов, она должна гореть, если лампа не реагирует, пробуем поменять местами выводы на обмотках трансформатора. Когда пробник проверен, начинаем работу со схемой — проверяем pnp транзистор в схеме, не выпаивая на плате, подключаем к выводам пробник, а переключатель переходов устанавливаем в один из режимов — P-N-P или N-P-N, включаем питание

Когда Л1 горит, это означает, что элемент работоспособный, если загорается Л2, то это свидетельство о какой-то неисправности, возможно, пробит один из переходов. Если не горит ни Л1, ни Л2, это означает, что полупроводниковый прибор не работает.

Когда нет возможности проверить транзистор мультиметром, не стоит отчаиваться, есть пробники, не требующие предварительной наладки, у них более простая схема — это обыкновенная батарейка и лампочка, можно использовать светодиод. Когда попеременным касанием контактов транзистора щупами простого устройства определяется пара, в которой загорается светодиод, а в другом варианте нет — элемент радиотехники (транзистор) рабочий. Этот способ прозванивать схему рекомендуется на платах, где нет силовой величины тока. Можно выполнить проверку тестером.

Что такое диод и как он работает

В этой радиодетали два разных полупроводника:

  • n-типа;
  • p-типа.

К ним подсоединяют два выхода электродов:

  • анод;
  • катод.

Эти проводники обладают разной проводимостью. При работе получается зона p-n перехода, когда по одну сторону накапливаются положительно заряженные ионы, а с другой — электроны.

Итак, принцип работы:

  1. Когда по элементу проходит ток, он начинает воздействовать на катод, накаливая его. Электрод начинает испускать электроны.
  2. Между электродами образуется электрическое поле.
  3. Так как анод с положительным потенциалом — он притягивает электроны к себе. Происходит появление эмиссионного тока.
  4. Теперь все те электроны, которые добрались до анода, образуют катодный ток.
  5. Весь компонент пропускает электрический ток.
  6. Если же на аноде появляется отрицательный заряд, диод остается в запертом положении и размыкает электрическую цепь.

Иными словами, этот полупроводник способен пропускать электрический ток исключительно в одном направлении.

Знание того как работает этот элемент поможет проверить исправность диода.

Современные конструкции встречаются в разных корпусах:

  • металлическом;
  • стеклянном;
  • пластиковом.

Измерение электрических параметров

Для каждого вида измерений существует отдельный алгоритм

Важно знать, как пользоваться тестером, то есть понимать, в какое положение установить переключатель, к каким гнёздам подключить щупы, как включать прибор в электрическую цепь

Схема подключения тестера при измерении тока, напряжения и сопротивления

Определение силы тока

Значение нельзя измерить на источнике, так как она свойственна участку цепи или определённому потребителю электричества. Поэтому мультиметр включают в цепь последовательно. Грубо говоря, измерительным прибором заменяют часть проводника в замкнутой системе источник-потребитель.

При измерении силы тока мультиметр необходимо включать в цепь последовательно

Из закона Ома мы помним, что силу тока можно получить, разделив напряжение источника на сопротивление потребителя. Поэтому если по какой-то причине Вы не можете измерить один параметр, то его можно легко вычислить, зная два других.

Измерение напряжения

Напряжение измеряют либо на источнике тока, либо на потребителе. В первом случае достаточно соединить положительный щуп мультиметра с «плюсом» питания («фазой»), а отрицательный щуп – с «минусом» («нулём»). Мультиметр примет на себя роль потребителя и отобразит фактическое напряжение.

Чтобы не перепутать полярность щуп чёрного цвета подключаем к гнезду COM и минусы источника, а щуп красного цвета к разъёму VΩmA и плюсу

Во втором случае цепь не размыкают, а прибор подключают к потребителю параллельно

Для аналоговых мультиметров важно соблюдать полярность, цифровой в случае ошибки просто покажет отрицательное напряжение (например, -1,5 V). И, конечно, не забывайте, что напряжение – это произведение сопротивления и силы тока

Как измерить сопротивление мультиметром

Сопротивление проводника, потребителя или электронного компонента измеряется при отключенном питании. В противном случае велик риск поломки прибора, а результат измерения будет некорректным.

Если известно значение измеряемого сопротивления, то предел измерения выбирается больше значения, но как можно ближе к нему

Для определения величины параметра достаточно просто соединить щупы с противоположными контактами элемента — полярность не имеет значения

Обратите внимание на широкий разброс единиц измерения – используются омы, килоомы, мегаомы. Если установить переключатель в режим «2 МОм» и попробовать измерить 10-омный резистор, на шкале мультиметра отобразится «0»

Напоминаем, что сопротивление можно получить, разделив напряжение на силу тока.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h21Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Проверка мультиметром

Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.

Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток — Drain, исток — Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.

Проверку можно выполнить с помощью , но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.

Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки — стоку D, а положительным красным щупом — вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.

Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.

Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром. Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

Что такое транзистор? Основные типы

Транзистором назван полупроводниковый радиоэлектронный компонент для преобразования тока в усилительном, когда большой выходной сигнал меняется пропорционально малому входному, или ключевом, когда транзистор полностью открыт или закрыт в зависимости от наличия входного сигнала, режимах. Применительно к технологии изготовления можно разделить на биполярные и полевые радиоэлементы. Биполярные компоненты бывают прямой (p-n-p) либо обратной (n-p-n) проводимости. Приборы полевые могут быть n-типа или p-типа, с изолированным или встроенным каналом.

Проверка исправности конкретного транзистора требует некоторых познаний в электронике. Достаточно просто прозвонить выводы транзистора как электрическую цепь, чтобы убедиться, что транзистор исправен. Щуп с черным проводом подключается на вход COM прибора. К входу измерения сопротивления подключен красный провод.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

  • Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов

Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector