В чём уникальность электромагнитной подвески автомобиля
Содержание:
Перспективы появления магнитных подвесок в будущем
Любое развитие технологий ведёт к снижению себестоимости систем в производстве. Поэтому применение активных подвесок будет расширяться, причём параллельно они обзаведутся и новыми функциями.
Например, уже сейчас ведутся работы по нескольким направлениям:
- активные электромагниты встраиваются в подвески рабочих кресел водителей на грузовых автомобилях, что ещё более повысит комфорт;
- системы технического зрения всё более тщательно изучают состояние дороги впереди автомобиля для максимально правильного реагирования;
- предсказание состояние покрытия может быть связано с системами навигации, в этом случае подвеска будет настраиваться в соответствии с разметкой дорожных карт и получать дополнительную информацию по спутниковой связи.
Ведущие фирмы мира понимают всю важность и перспективность новых разработок в этой области. Так труды покойного профессора Bose не задержались в рамках основанной им компании, а были выкуплены и стали основой для новой специализированной фирмы, в которую делаются значительные инвестиции
Результаты в виде серийного внедрения должны появиться достаточно быстро.
Как работает магнитная подвеска
Современные механизмы, называемые магнитными подвесками, эксплуатируют принцип работы, в основе которого лежит явление электромагнетизма. Этот эффект описывает зависимость между двумя видами поля: электрического и магнитного.
Стандартные продукты, устанавливаемые на автомобилях, исполняют свою основную задачу благодаря таким элементам конструкции как пружины и упругие детали. Электромагнитные подвески, в качестве основных элементов, используют электромагниты. Именно из-за такого механического состава современные подвески и получили свое название.
Схема работы устройства заключается в создании особой системы управления (control system) путем установки на транспортное средство бортового компьютера. Данный компьютер, также именуемый электронным узлом, в real-time режиме снимает характеристики колесного ряда, и, в зависимости от них, посылает соответствующие команды. Управление осуществляется достаточно простым образом: схема намного проще по своей сути, чем те же пружины или гидравлические конструкции или маховик.
Исторический аспект
Рено Логан Передняя Подвеска Ремонт Своими РукамиРено логан передняя подвеска ремонт своими руками
До начала 80-х годов технология магнитной подвески была лишь теорией. Но в 1982 году произошёл настоящий прорыв, положивший начало новой эре. Именно в этом году началась постройка первого в мире поезда, двигающегося на основе магнитной подвески.
Устройство получило название магнитоплан. Результаты первых тестов превзошли все ожидания, скорость, которую показал аппарат, превысила 500 километров в час. К сожалению, эти наработки были совершенно непригодны для использования в автомобилях.
Тем не менее ученые и инженеры со всего мира не могли так просто отказаться от тех преимуществ, которые давала магнитная подвеска поезда. Самым главным из всех было отсутствие трения.
Не имея возможности модернизировать все дороги, ученые сосредоточили своё внимание на работе над ходовой. Путём введения электромагнитных управляющих элементов, они смогли добиться серьёзного роста динамических характеристик и управляемости. Это стало началом внедрения магнитной подвески в современное производство
Это стало началом внедрения магнитной подвески в современное производство.
Магнитная подвеска управляется при помощи бортового компьютера. Как результат процесс вождения приобретает небывалую мягкость. Автомобиль хорошо держится на дороге. Это, в свою очередь, значительно повышает комфорт внутри салона.
Назначение элементов
Несмотря на глубокие различия в принципе действия, у всех электромагнитных подвесок много общих элементов:
- система датчиков, фиксирующих перемещение колёс относительно кузова, а также следящих за состоянием дороги на участках, которые колесу только предстоит преодолеть для заблаговременной реакции на неровности;
- датчики общего назначения, собирающие информацию о текущих параметрах движения, скорости, реакциях водителя и прочем;
- электронный блок управления с микрокомпьютером, собирающий, анализирующий и перерабатывающий информацию в сигналы управления;
- силовая электроника, формирующая мощные токи в обмотках электромагнитов;
- линейные электрические магниты, создающие необходимые механические усилия на штоки элементов подвески;
- исполнительные и направляющие узлы ходовой части.
Помимо видимых узлов в системе присутствует не менее технологичный программный продукт, под управлением которого всё и работает. Его роль в общем комплексе ничуть не меньше, чем у элементов подвески.
Основные элементы магнитной подвески.
Каждая электромагнитная подвеска состоит из определенного набора компонентов, обеспечивающих выполнение главной ее задачи:
- Упругие конструкции, обладающие возможностью приема и передачи приложенных по вертикали сил.
- Направляющие конструкции, формирующие схему движения колес транспорта, а также обеспечивающие связь колесного ряда между собой. Направляющие также отвечают за прием и передачу сил, приложенных по горизонтали.
- Амортизирующие элементы, основная задача которых заключается в понижении силы колебаний кузова при перемещении на плоскости дороги.
Обычные представители современных подвесок состоят из множества элементов, каждый из которых может выполнять широкий ряд задач. Но в то же время это поразительно сложные механизмы, каждая составляющая которого обладает уникальными свойствами. Такой подход к технологиям производства подвесок обеспечивает хороший прирост в показателях управляемости, комфортабельности и устойчивости транспортного средства.
ЭМ-подвески также обладают всеми вышеперечисленными компонентами, только в более совершенном, технологически улучшенном их варианте. Магнитная подвеска – это особый механизм, основой которого является электрический двигатель. Двигатель обладает двумя режимами хода, обеспечивающихся наличием упругого и демпфирующего элемента. За переключение между ними отвечает особый микроконтроллер. За счет подобной конструкции ЭМ-подвеска способна исполнять роль обычного автомобильного амортизатора.
Преимущества
Специалисты отмечают целый ряд преимуществ данной подвески:
- Надежность. В конструкции нет лишних элементов – гашение колебаний производится за счет электромагнитной индукции, без каких-либо пружин и гидравлических амортизаторов.
- Безопасность. «Лексус ЛС», который был взят в качестве опытного образца, практически не кренился в поворотах. Более того, при резком торможении передние подушки автоматически выравнивали кузов в горизонтальном положении. Это исключает возможность заноса и аварийной ситуации.
- Комфорт. За счет применения умного компьютера машина могла заранее предугадывать неровности. Таким образом, ход подвески был максимальным, а кузов оставался в горизонтальном положении. Машина не раскачивалась на ямах и сохраняла свою траекторию движения.
- Экономичность. В любой момент водитель может перевести подвеску в механический режим работы. Таким образом, при обратном ходе электромагнита будет вырабатываться электроэнергия.
Судьба проекта
Годы шли, но технология так и продолжала оставаться перспективной, но крайне сложной в плане реализации. На сегодняшний день ни с одним из автопроизводителей контракта заключено не было, но наработки были использованы для создания сидений с амортизацией, устанавливаемых на грузовые автомобили.
После смерти Боуза в 2013 году дальнейшая судьба проекта оказалась под вопросом. В итоге руководство фирмы выставило разработку на продажу: купить права на неё захотела компания ClearMotion, которая решила использовать её для модернизации классической подвески с пружинами (инженеры предприятия работают над электрогидравлическим модулем, ускоряющим отклик конструкции на неровности дороги). Уже даже на первый взгляд предложенные идеи (сбор информации о рельефе дорог и их хранения в облачных хранилищах с целью обеспечения последующего предугадывания поведения подвески) звучат сложнее, чем те, что предложил Боуз треть века назад, но удастся ли авторам довести задумку до этапа реализации, покажет время.
Виды электромагнитных подвесок
С тех пор, как стало возможным использование электроники в использовании управления подвеской, конструкторы многих фирм стали заниматься разработкой уникальных систем в этом направлении и на сегодняшний день наиболее преуспели три:
- Bose;
- SKF;
- Delphi.
Bose электромагнитная подвеска
Изобретатель системы Bose известный математик и разработчик акустических систем, доктор Amar Bose. Еще 30 лет назад он начал разработку системы электронной подвески, а в настоящее время такие подвески уже реальность.
На серийных автомобилях они не используются ввиду их дороговизны, но на спортивных и VIP автомобилях довольно популярны.
Bose электромагнитная подвеска профессора Боуза работает как линейный электродвигатель, шток которого выполняет роль якоря. Якорь совершает возвратно-поступательные движения возле статора, расположенного в корпусе амортизатора.
Управление подвеской полностью осуществляет Электронный блок управления.
Амортизационный узел bose электромагнитной подвески позволил исключить упругий элемент, жидкостный амортизатор и поперечный стабилизатор. Все эти функции стал выполнять один элемент.
Блок управления подает напряжение на линейный электродвигатель, на штоке появляется сила, которая выталкивает шток с усилием до 380 кг. На четыре колеса в сумме приходится более 1,5 т., а это вес средней малолитражки.
С такой подвеской автомобиль выдерживает постоянный клиренс (высота автомобиля над дорогой), не зависимо от нагрузки.
Bose электромагнитная подвеска выполняет и роль пружины и роль амортизатора, то есть берет на себя нагрузку и демпфирующую отдачу. А также исключает по определению стабилизатор, потому что механически выравнивать левое с правым колесом нет необходимости, делает это электроника.
ЦПУ (центральный пульт управления) посылает на каждое колесо то напряжение, которое нужно в той или иной дорожной обстановке.
Автомобиль не делает продольных «клевков» при торможении и при разгоне. Не дает боковой крен. Благодаря идеальному распределению опорных сил, автомобиль становится максимально послушным и удивительно комфортным.
Проходя по неровностям дороги, этот линейный электродвигатель выполняет обратную функцию, то есть работает не как электродвигатель, а как генератор. Он преобразует возвратно-поступательные движения в электрическую и подает её обратно в электрическую сеть автомобиля.
Система SKF
Конструкция шведской компании SKF несколько иная. Они создали капсулу в которой расположены два электромагнита один против другого.По сути дела, это такая же стойка МакФерсон, только вместо гидравлического амортизатора установлена капсула с электромагнитами, управляющими из ЦПУ электронными мозгами.
Ток подается на магниты подается от ЦПУ исходя из дорожных условий и мгновенно изменяет его силу в зависимости от изменяющихся условий. Колесные датчики анализируют каждый бугорок и подают сигнал на центральный блок управления.
Конечно подвеска имеет классический вид, имеет пружину в подвеске, что явилось подстраховкой, когда вдруг электронная система выйдет из строя или по каким-то другим причинам будет отключена. Так же, автомобиль не будет проседать при длительной стоянке с отключенным аккумулятором.
Система Delphi
Компания Delphi придумала систему, которая напоминает обычный однотрубный амортизатор, только наполненный необычной жидкостью. Эта жидкость магнито-реологическая, то есть жидкость с магнитными частицами, размер которых составляет десять микрон и меньше.
Жидкость эта составляет одну треть от основного объема. Электромагнит расположен в головке поршня амортизатора и управляется ЦПУ.
Когда подается соответствующее напряжение на электромагнит, магнитные частицы активизируются и собираются, под воздействием магнитных полей, в структуры, которые меняют вязкость жидкости, соответственно меняя режим работы амортизаторов.
Также, как и в системе SKF, и в отличии от системы Bose, вид подвески напоминает классический вид и имеет упругий элемент.
Вот как продвинулась наука, мои дорогие читатели, и как фантастично работают новые изобретения. Вопрос другой, когда мы сможем ездить на автомобилях с такой подвеской.
Главное это скоро будет! Я верю в это и не перестаю удивляться гениальности человеческой мысли.
До встречи на блоге! Делитесь знаниями с близкими и удачи на дорогах!
Кстате, очень интересные статьи: Адаптивная подвеска, Пневматическая подвеска, Торсионная подвеска.
Зависимая подвеска
Зависимая подвеска характеризуется зависимостью перемещения одного колеса моста от перемещения другого колеса.
Передача сил и моментов от колес на кузов при такой подвеске может осуществляться непосредственно металлическими упругими элементами – рессорами, пружинами или с помощью штанг – штанговая подвеска.
Металлические упругие элементы имеют линейную упругую характеристику и изготавливаются из специальных сталей, обладающих высокой прочностью при больших деформациях. К таким упругим элементам относятся листовые рессоры, торсионы и пружины.
Листовые рессоры на современных легковых автомобилях практически не применяются, за исключением некоторых моделей автомобилей многоцелевого назначения. Можно отметить модели легковых автомобилей, выпускавшиеся ранее с листовыми рессорами в подвеске, которые продолжают эксплуатироваться и в настоящее время. Продольные листовые рессоры устанавливались в основном в зависимой подвеске колес и выполняли функцию упругого и направляющего устройства.
На легковых автомобилях и грузовых или микроавтобусах применяются рессоры без подрессорников, на грузовых автомобилях – с подрессорниками.
Пружины как упругие элементы применяются в подвеске многих легковых автомобилей. В передней и задней подвесках, выпускаемых различными фирмами большинства легковых автомобилей применяются винтовые цилиндрические пружины с постоянными сечением прутка и шагом навивки. Такая пружина имеет линейную упругую характеристику, а необходимые характеристики обеспечиваются дополнительными упругими элементами из полиуретанового эластомера и резиновыми буферами отбоя.
На легковых автомобилях Российского производства в подвесках применяют цилиндрические винтовые пружины с постоянными сечением прутка и шагом в сочетании с резиновыми отбойными буферами. На автомобилях производителей других стран, например, БМВ 3-й серии в задней подвеске устанавливают бочкообразную (фасонную) пружину с прогрессивной характеристикой, достигаемой за счет формы пружины и применения прутка переменного сечения.
На ряде автомобилей для обеспечения прогрессивной характеристики применяется комбинация цилиндрических и фасонных пружин с переменной толщиной прутка. Фасонные пружины имеют прогрессивную упругую характеристику и называются «миниблоками» за небольшие размеры по высоте. Такие фасонные пружины применяют, например в задней подвеске автомобилей «Фольксваген», «Ауди», «Опель» и др. Фасонные пружины имеют различные диаметры в средней части пружины и по краям, а пружины «миниблок» имеют и различный шаг навивки.
Торсионы, как правило, круглого сечения применяются на автомобилях в качестве упругого элемента и стабилизатора.
Упругий крутящий момент передается торсионом через шлицевые или четырехгранные головки, расположенные на его концах. Торсионы на автомобиле могут быть установлены в продольном или поперечном направлении. К недостаткам торсионов следует отнести их большую длину, необходимую для создания требуемых жесткости и рабочего хода подвески, а также высокую соосность шлицов на концах торсиона. Однако следует отметить, что торсионы имеют небольшую массу и хорошую компактность, что позволяет успешно применять их на легковых автомобилях среднего и высокого классов.
Виды магнитных подвесок
Разные компании в разработке пошли по своим направлением, руководствуясь внутренними программами и конечными целями.
Принято выделять концепции подвесок от американской компании Delphi Corporation, известной шведской фирмы SKF и идею профессора Bose, чьё имя в названии компании стало синонимом особо качественных акустических систем для автомобилей.
Delphi
Относительная простота этой системы не означает её примитивность или плохую эффективность.
Несмотря на то, что электромагниты здесь управляют только свойствами амортизаторной жидкости, точное воздействие на мгновенную жёсткость демпфера даёт подвеске совершенно новые свойства. Скорость изменения характеристик амортизатора здесь многократно выше, чем у традиционных активных гидравлических демпферов.
Это достигается специальной жидкостью, которая настолько точно и эффективно меняет свою вязкость под воздействием управляющего тока электромагнита, что особой надобности в изменении жёсткости упругого элемента не возникает.
Сильная зависимость работы подвески именно от свойств амортизатора известна давно, их подбору уделяется особое внимание в автоспорте, а там каждая секунда пребывания автомобиля на трассе имеет решающее значение. Характеристики пружин не так важны
Измеряемые микронами габариты частиц позволяют добиться большого быстродействия за счёт минимальной инерции
То же качество обеспечивает и минимальное потребление тока обмотками магнитов, что очень важно для общей экономичности автомобиля и упрощения силовой электроники
Нужная информация снимается с датчиков подвески и других систем автомобиля, обрабатываясь в электронном блоке управления подвеской.
SKF
Шведская компания пошла другим путём
Не касаясь гидравлических амортизаторов, всё внимание было уделено скорости изменения характеристик упругого элемента
Для этого в него была интегрирована специальная капсула, содержащая два мощных электромагнита. Меняя их поле взаимодействия можно настолько быстро реагировать на ситуацию, что данное устройство способно выступать в роли как упругого, так и демпфирующего элементов.
Ведь суть демпфирования состоит в динамическом изменении жёсткости, вплоть до смены знака вектора силы с отталкивания на притяжение. Таким способом компьютер может погасить любые колебания, лишь бы хватило быстродействия и диапазона изменения силы взаимодействия электромагнитов. А это уже вопросы технологического исполнения.
Потребляемая мощность здесь значительно выше, чем у чисто статического режима работы электромагнитов гидравлических активных амортизаторов.
Но до неприемлемых величин она не возрастает, реально сравниваясь с более традиционными потребителями вроде климатической системы или электрического отопителя, а чтобы избежать полного отказа подвески в случае поломок электрооборудования в подвеске сохранены традиционные пружины, частично резервирующие электромагнитное оборудование.
Bose
Много занимавшийся акустикой профессор Bose ближе к концу 20 века увлёкся идеей создания идеальной автомобильной подвески. Неудивительно что исполнительный элемент немного напоминает сильно увеличенную электромагнитную систему большого динамического громкоговорителя.
Но реально общего тут лишь применение устройства, теоретически представляющего собой линейный электродвигатель. То есть если сравнить это с разработкой SKF, то количество полюсов электромагнитов увеличено во много раз. Они расположены на штоке и статоре устройства, напоминающего телескопический амортизатор.
Магнитная отдача узла достаточно велика, это позволило отделаться приемлемой мощностью управления, зато быстродействие таково, что получившийся «динамик» способен гасить любые процессы, от стационарных до колебательных, работая как пружина и как амортизатор.
Достаточно сформировать и подать на обмотки управляющий сигнал, например, аналогичный внешнему воздействию, но с повёрнутой на 180 градусов фазой. То есть полностью погасить нежелательные колебания, наложив на них такие же, но в противоположном направлении в каждый отдельно взятый момент времени.
Такая подвеска настолько эффективна, что её можно считать эталоном среди всех электромагнитных устройств. Подвеска может обеспечить уникально большой рабочий ход, порядка 20 сантиметров, что для гражданских автомобилей чрезвычайно много, отличную стабильность положения кузова, чёткие реакции на любой профиль на любой скорости, отсутствие клевков и кренов.
Первые же презентации системы на тестовых автомобилях Lexus буквально ошеломили автомобильных журналистов, хотя эти машины и в стандартном исполнении обладают высочайшей плавностью хода.
Виды магнитных подвесок
Разные компании в разработке пошли по своим направлением, руководствуясь внутренними программами и конечными целями.
Принято выделять концепции подвесок от американской компании Delphi Corporation, известной шведской фирмы SKF и идею профессора Bose, чьё имя в названии компании стало синонимом особо качественных акустических систем для автомобилей.
Delphi
Относительная простота этой системы не означает её примитивность или плохую эффективность.
Несмотря на то, что электромагниты здесь управляют только свойствами амортизаторной жидкости, точное воздействие на мгновенную жёсткость демпфера даёт подвеске совершенно новые свойства. Скорость изменения характеристик амортизатора здесь многократно выше, чем у традиционных активных гидравлических демпферов.
Это достигается специальной жидкостью, которая настолько точно и эффективно меняет свою вязкость под воздействием управляющего тока электромагнита, что особой надобности в изменении жёсткости упругого элемента не возникает.
Сильная зависимость работы подвески именно от свойств амортизатора известна давно, их подбору уделяется особое внимание в автоспорте, а там каждая секунда пребывания автомобиля на трассе имеет решающее значение. Характеристики пружин не так важны
Измеряемые микронами габариты частиц позволяют добиться большого быстродействия за счёт минимальной инерции
То же качество обеспечивает и минимальное потребление тока обмотками магнитов, что очень важно для общей экономичности автомобиля и упрощения силовой электроники
Нужная информация снимается с датчиков подвески и других систем автомобиля, обрабатываясь в электронном блоке управления подвеской.
SKF
Шведская компания пошла другим путём
Не касаясь гидравлических амортизаторов, всё внимание было уделено скорости изменения характеристик упругого элемента
Для этого в него была интегрирована специальная капсула, содержащая два мощных электромагнита. Меняя их поле взаимодействия можно настолько быстро реагировать на ситуацию, что данное устройство способно выступать в роли как упругого, так и демпфирующего элементов.
Ведь суть демпфирования состоит в динамическом изменении жёсткости, вплоть до смены знака вектора силы с отталкивания на притяжение. Таким способом компьютер может погасить любые колебания, лишь бы хватило быстродействия и диапазона изменения силы взаимодействия электромагнитов. А это уже вопросы технологического исполнения.
Потребляемая мощность здесь значительно выше, чем у чисто статического режима работы электромагнитов гидравлических активных амортизаторов.
Но до неприемлемых величин она не возрастает, реально сравниваясь с более традиционными потребителями вроде климатической системы или электрического отопителя, а чтобы избежать полного отказа подвески в случае поломок электрооборудования в подвеске сохранены традиционные пружины, частично резервирующие электромагнитное оборудование.
Bose
Много занимавшийся акустикой профессор Bose ближе к концу 20 века увлёкся идеей создания идеальной автомобильной подвески. Неудивительно что исполнительный элемент немного напоминает сильно увеличенную электромагнитную систему большого динамического громкоговорителя.
Но реально общего тут лишь применение устройства, теоретически представляющего собой линейный электродвигатель. То есть если сравнить это с разработкой SKF, то количество полюсов электромагнитов увеличено во много раз. Они расположены на штоке и статоре устройства, напоминающего телескопический амортизатор.
Магнитная отдача узла достаточно велика, это позволило отделаться приемлемой мощностью управления, зато быстродействие таково, что получившийся «динамик» способен гасить любые процессы, от стационарных до колебательных, работая как пружина и как амортизатор.
Достаточно сформировать и подать на обмотки управляющий сигнал, например, аналогичный внешнему воздействию, но с повёрнутой на 180 градусов фазой. То есть полностью погасить нежелательные колебания, наложив на них такие же, но в противоположном направлении в каждый отдельно взятый момент времени.
Такая подвеска настолько эффективна, что её можно считать эталоном среди всех электромагнитных устройств. Подвеска может обеспечить уникально большой рабочий ход, порядка 20 сантиметров, что для гражданских автомобилей чрезвычайно много, отличную стабильность положения кузова, чёткие реакции на любой профиль на любой скорости, отсутствие клевков и кренов.
Первые же презентации системы на тестовых автомобилях Lexus буквально ошеломили автомобильных журналистов, хотя эти машины и в стандартном исполнении обладают высочайшей плавностью хода.