Простые линейные стабилизаторы тока для светодиодов своими руками
Содержание:
- Схемы стабилизаторов и регуляторов тока
- Стабилизированный источник питания 12В / 30А
- Нюансы использования огней
- Стабилизатор тока, схема
- Регулируемый блок питания своими руками
- Типы блоков питания
- Стабилизатор напряжения ДХО и др. светодиодов 3W с проводом 12-24V
- Что нужно для подключения
- Схема принципиальная блока 12 В 15 А
- Подбор готового трансформатора
- Как выбрать стабилизатор напряжения для дома?
- Сопротивление нагрузки
Схемы стабилизаторов и регуляторов тока
Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).
Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.
На КРЕНке
Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.
Крены для микросхем
Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.
Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).
Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.
На двух транзисторах
На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.
Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.
Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.
На операционном усилителе (на ОУ)
Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.
При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.
Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.
На микросхеме импульсного стабилизатора
Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.
Схема выпрямителя с импульсным выпрямителем
Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.
Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.
Стабилизированный источник питания 12В / 30А
Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.
На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.
В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.
Примечания
Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.
Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.
Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.
Вычисления
Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.
Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.
TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.
Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом. 871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.
Тестирование и ошибки
Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.
Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.
Нюансы использования огней
Существует специальный ГОСТ, который определяет и регламентирует установки, технические параметры и само подключение дневных ходовиков.
В регламенте указывается, что схема должна применяться такая, дабы ходовики включались автоматически, когда происходит поворот ключа в замке зажигания. То есть при пуске силовой установки. Но также ДХО обязаны в автоматическом режиме выключаться, как только в работу вступают фары основного света. Здесь, как вы понимаете, речь идет о блоке головных фар (ближний или дальний свет). Также есть правило, указывающее на то, что головной свет должен включаться лишь тогда, когда включаются габариты. Исключением являются кратковременные сигналы для предупреждения других водителей.
Исходя из сказанного выше, можно смело говорить, что через кнопку ДХО выводить не стоит. Так же как и через ручник. А вот в поворотники вмонтировать можно, но тут потребуется подключить 2 дополнительных провода от каждого поворотника.
Все это крайне важно учитывать, подключая ходовики. Ведь вас должно волновать не только то, чтобы не перегорали лампочки
Хотя и это крайне значимый момент.
Без продуманной и грамотной схемы самостоятельно поставить ДХО точно не получится. Ведь все должно работать с отключением при включении дальнего или ближнего света.
Существует целый ряд схем, по которым в теории можно поставить на свою машину ДХО при их отсутствии в штатной комплектации своего автотранспортного средства. Вопрос лишь в том, какую именно схему лучше задействовать.
Стабилизатор тока, схема
Мне приходится часто просматривать ассортимент на Aliexpress в поисках недорогих но качественных модулей. Разница по стоимости может быть в 2-3 раза, время уходит на поиск минимальной цены. Но благодаря этому делаю заказ на 2-3 штуки для тестов. Покупаю для обзоров и консультаций производителей, которые покупают комплектующие в Китае.
В июне 2016 года оптимальным выбором стал универсальный модуль на XL4015, цена которого 110руб с бесплатной доставкой. Его характеристики подходят для подключения мощных светодиодов до 100 Ватт.
Типовая схема включения понижающего преобразователя
Схема в режиме драйвера.
В стандартном варианте корпус XL4015 припаян к плате, которая служит радиатором. Для улучшения охлаждения на корпус XL4015 надо поставить радиатор. Большинство ставят его сверху, но эффективность такой установки низкая. Лучше систему охлаждения ставить снизу платы, напротив места пайки микросхемы. В идеале её лучше отпаять и поставить на полноценный радиатор через термопасту. Ножки скорее всего придется удлинить проводами. Если потребуется такое серьезное охлаждение контроллеру, то оно потребуется и диоду Шотки. Его тоже придётся поставить на радиатор. Такая доработка значительно повысит надежность всей схемы.
Разновидности XL4015, добавлен вольтметр
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками
Типы блоков питания
Принято разделять подпитывающие системы на несколько типов. В первую группу входят вторичные источники электропитания, которых большое количество. Во вторую – трансформаторного или сетевого. Третья группа включает импульсные источники. Каждый из блоков питания имеет свои характеристики, свои положительные и отрицательные стороны.
Основная часть приборов освещения – система подпитки. Именно 12-вольтовое подпитывающее устройство позволяет сэкономить электрическую энергию. Сделать прибор несложно. В нашей статье мы попытаемся ответить на вопрос, как сделать блок питания своими руками.
Самым распространённым является подпитывающая система второго типа, которую и будем сегодня собирать.
Стабилизатор напряжения ДХО и др. светодиодов 3W с проводом 12-24V
Через стабилизатор напряжения надо подключать любые светодиоды, тогда они будут гореть вечно. Светодиод любит постоянный ток. Здравствуйте подскажите пожалуйста. Лучше использовать импульсный стабилизатор КПД выше гораздо, соответственно не нужен радиатор большой достаточно платы.
Войти через. На AliExpress мы предлагаем тысячи разновидностей продукции всех брендов и спецификаций, на любой вкус и размер. Если вы хотите купить стабилизатор напряжения 12 в и подобные товары, мы предлагаем вам позиций на выбор, среди которых вы обязательно найдете варианты на свой вкус. Если конкретные характеристики говорят вам больше, чем непонятные названия, возможно, следующая информация — для вас: по всему объему продукции, найденной по вашему запросу «стабилизатор напряжения 12 в», Применение может варьироваться в весьма широком диапазоне, есть Другое , Коммутируемый виртуальный канал, и каких только еще нет.
Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни ДХО или в другие фонари.
Столкнувшись с тем, что ходовые огни должны включаться на заведенном двигателе, было принято решение заказать контроллер, который бы позволял определить что двигатель работает , и соответственно включить ДХО , но при этом не требовалось бы лезть в проводку автомобиля, есть конечно вариант подключать ДХО от провода, на котором ток появляется при включении зажигания, но во первых не у всех машин его можно найти под капотом у Nissan X-Trail кузов Т30 я не нашел , а в салон тянуть не благодарное это дело, во вторых, в момент запуска двигателя, напряжение в бортовой сети скачет, что приведет к быстрому выходу из строя диодов в ходовых огнях. Немного покопавшись в интернете было найдено такое устройство, производство Энергомаша, но к сожалению найти его в Екб не получилось, да и стоимость похоже у него более рублей, пришлось посмотреть на алиэкспрессе, в итоге нашел такой девайс. Он подключается к бортовой сети, в любом месте, хоть на клемы аккумулятора, если ток в сети не выше 13 вольт двигатель не заведен , то это реле не пропускает его, то есть не включает ДХО, в том случае если ток превышает 13 вольт двигатель заведен , то ДХО включаются. В общем это реле, является универсальным, с помощью него можно подключить ДХО на любом авто, я заказал 2 шт. Подключаем контакты 2 на аккумулятор, на контакты 1 подключаем наши ходовые огни, желтый провод 2 подключаем к габаритам, он даст команду реле, на отключение или затухание ДХО когда включен свет так требуют правила ПДД , 4 предохранитель от КЗ.
Мы постараемся ответить на вопрос: ремонт дхо своими руками по рекомендациям подлинного мастера с максимально подробным описанием. На сегодняшний день дневные ходовые огни являются обязательным видом оптики, которым должны быть оснащены все автомобили, использующиеся на территории РФ. Поскольку ни один источник освещения не может работать вечно, наши соотечественники часто сталкиваются с проблемой выхода из строя диодов. В этой статье мы расскажем, как производится ремонт ДХО своими руками и в каких случаях его нужно делать.
Что нужно для подключения
Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:
трехжильный кабель ВВГнГ-Ls
Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.
выключатель трехпозиционный
Данный выключатель в отличие от простых, имеет три состояния:
123
Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.
Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.
С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.
провод ПУГВ разных цветов
Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.
Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.
Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.
Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.
Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п
Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока
А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.
Схема принципиальная блока 12 В 15 А
В качестве трансформатора использовался тороид 220 В / 12 В 150 Вт (он будет питать 2 отдельных источника питания с разной силой тока).
Стоит сразу 3 стабилизатора LM338, соединенных параллельно. Просматривая даташит производителей LM338 стало понятно, что 3 штуки дадут запас надежности даже в случае сильного нагрева воздуха в корпусе.
При первых тестах использовали диодный мост BR1010, но были в ужасе от его быстрого нагрева до высокой температуры, поэтому пришлось брать KBPC 2510 и установка большего радиатора. В качестве вспомогательных конденсаторов 2x 10000 мкФ, 10 мкФ и 1 мкФ для фильтрации нежелательных помех. Контрольные резисторы LM338 имеют сопротивление 240 Ом и 1,9 кОм.
Обратите внимание, что тороиды могут иметь первоначальное высокое потребление энергии от сети (бросок тока при включении) и, таким образом, может перегорать предохранитель, в несколько раз превышающий номинальное потребление тока, поэтому советуем использовать устройство плавного пуска для тороидальных трансформаторов. Полезное: Электростатический генератор своими руками
Полезное: Электростатический генератор своими руками
Подбор готового трансформатора
Если есть готовый трансформатор с подходящей по току и напряжению вторичной обмоткой, можно попробовать подобрать готовый. Например, в серии ТПП есть подходящие изделия с напряжением вторичных обмоток, близким к 12 вольтам.
Трансформатор | Обозначение выводов вторичной обмотки | Напряжение, В | Допустимый ток, А |
ТПП48 | 11-12, 13-14, 15-16, 17-18 | 13,8 | 0,27 |
ТПП209 | 11-12, 13-15 | 11,5 | 0,0236 |
ТПП216 | 11-12, 13-14, 15-16, 17-18 | 11,5 | 0,072 |
Плюс этого решения – минимальная трудоемкость и надежность заводского исполнения. Минус – трансформатор содержит и другие обмотки, габаритная мощность рассчитана и на их нагрузку. Поэтому в массогабаритных показателях такой трансформатор будет проигрывать.
Как выбрать стабилизатор напряжения для дома?
правильно выбрать стабилизатор напряжения для дома
В частном секторе по обочинам дорог всегда установлены столбы-опоры, на которых размещаются провода. Именно по ним к домам подводится напряжение. Если пройти вдоль линии к ее началу, то можно обнаружить камеру со специальным устройством – трансформатором. Он преобразует подводимое высокое напряжение (обычно 6 или 10 кВ) в…нет, не в 220, а в 240-245 Вольт, которое далее по проводам на столбах распределяется по потребителям. Откуда же тогда у жителей частных домов проблема с напряжением и приходится читать, как выбрать стабилизатор? Во всем «виноваты» законы, в соответствии с которыми распространяется электрический ток. Здесь мы их рассматривать не будем, а для упрощения понимания воспользуемся аналогией с водопроводом.
- Источник бесперебойного питания (ИБП)
- Разделительный трансформатор 220В / 220В
- Принцип работы стабилизатора напряжения
Водо…токопровод
Представим, что электрический ток – это поток воды, провода на столбах – трубы, трансформатор – источник. От центрального трубопровода к каждому дому (пусть их будет три) подводится своя труба. Очевидно, что давление, создаваемое источником, придет к наиболее удаленному дому без изменений лишь в двух случаях: — в первых двух домах все краны закрыты, и они ничего не потребляют; — количество воды в центральной линии настолько велико, что ее забор двумя первыми потребителями не превращает поток в струйку. Из этого следует единственный вывод: система будет идеально функционировать, если производительность источника превышает суммарное потребление всех трех домов (с учетом потерь). На практике же первые дома берут так много воды из центральной линии, что у последних от начального напора не остается и следа.
разбор электроэнергии
Для того чтобы устранить эту проблему, можно воспользоваться несколькими решениями:
- повысить давление источника;
- уменьшить потребление первых двух домов;
- заменить источник на более производительный или установить дополнительный.
Первый вариант означает значительное превышение допустимых значений давления у первых на линии потребителей и повреждение их оборудования. Второй снижает уровень комфорта жителей, которым, фактически, запретят пользоваться частью домашних приборов. Третий связан с серьезными финансовыми затратами на замену источника и модернизацию трубопроводов.
От простого к сложному
Теперь переведем все вышесказанное на «электрический язык». Сейчас в каждом доме появились мощные электроприборы – утюги, кондиционеры, стиральные машинки, бойлеры. Соответственно, на каждый дом теперь приходится намного больший ток, чем на момент расчета и монтажа всей распределяющей системы. Мы удивляемся, почему возникают проблемы с напряжением и нужен стабилизатор. Очень просто! Никто не менял провода на столбах и трансформаторы, установленные еще во времена наших дедушек, когда общая нагрузка среднестатистического частного дома редко превышала 1 киловатт.
электропотребители
В результате получается, что большая часть мощности трансформатора потребляется ближними к нему по линии домами, а последним достаются крохи. Так как компании-собственники меняют оборудование редко, то электрики идут на компромисс – настраивают трансформатор на выдачу 240 В (220+10%), поэтому в ближних домах напряжение завышено, а в последних появляется дополнительный «бонус» 20 В. Однако это проблемы не решает – к концу линии напряжение часто снижается до 150 В.
падение напряжения
При повышенном могут перегорать лампы накаливания, излишне нагреваться элементы в схемах приборов. Хотя значение в 240 В и является допустимым, постоянно такой режим использовать не рекомендуется. В свою очередь, при пониженном напряжении схемы защиты некоторых электронных приборов блокируют включение: не работают компьютеры и телевизоры, нагреваются электродвигатели, светоотдача ламп накаливания существенно снижается и пр. Решение есть – стабилизатор напряжения.
стабилизатор напряжения
Это автоматическое устройство, создающее в домашней электросети стабильные 220 Вольт. Внутренняя схема таким образом выполняет переключение обмоток трансформатора, что подаваемое заниженное или завышенное напряжение преобразуется в требуемые 220 В. Нижний и верхний пределы, в которых допустима работа, указываются в спецификации к устройству.
Сопротивление нагрузки
В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение
V= I*R = 0.1 * 100 = 10 Вольт
Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.
А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.