Перевод единиц измерения крутящего момента. единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента. таблица

Как замеряют лошадей?

Измерить лошадиные силы двигателя автомобиля можно в условиях СТО, при наличии там соответствующего оборудования. Делать это можно при покупке авто, чтобы убедиться в целостности и работоспособности мотора, либо после его тюнинга, дабы узнать результаты проведенных работ.

Из оборудования необходимы стенд и компьютер с датчиками. Дальше машину загоняют на стенд, у которого имеются ролики. Колеса ставятся на свободно вращающиеся ролики и закрепляют стяжкой. Затем, испытатель давит на педаль газа, колеса вращаются и машина едет по роликам, формально оставаясь на стенде.

Параллельно с этим, подключенное оборудование следит за работой агрегата. Компьютер может вывести массу данных: не только л.с. или киловатты, но и график разгона, его кривую. Анализируя ее, исследователи и тюнеры могут понять, на каких отметках мотор испытывает проблемы с разгоном и работой, следовательно, исправить неполадки, подогнать трансмиссию к оптимальному переключению передач или внедрить какие-нибудь другие фишки для улучшенных ходовых характеристик.

Максимальная и номинальная мощность двигателей

В 2010 году европейские и американские производители двигателей прекратили указывать их мощность, ограничившись лишь показателями объема и крутящего момента, выраженного либо в Ньютонах на метр (Н/м) либо в американской системе – футов на фунт (Ft/Lbs). Во втором случае, чтобы получить более привычные для нас единицы, достаточно умножить значение на 1,356. Впрочем, полученные данные все равно не столь очевидны, чтобы сразу сориентироваться в мощности устройства.

Мощность измеряется по формуле P (Вт) = Момент (Н·м) *Частоту вращения (Об/мин) / 9.5492.

Нужно иметь в виду, что максимальная мощность и максимальный момент достигаются при разных оборотах двигателя. Так максимальный момент, как видно из графика, будет на оборотах примерно 2400-2600, а максимальная мощность – при 3600 об/мин. Поэтому, для того, чтобы все-таки узнать на какой мощности у вас работает двигатель, нужно знать, на какие рабочие обороты он настроен, что не все производители указывают. Серьезные компании двигателей указывают для этого график, аналогичный представленному внизу, или конкретные значения мощности, зависящие оборотов. Если у вас есть регулятор оборотов двигателя, значит, максимальная мощность будет на максимальных оборотах.

Этим различием и пользовались производители двигателей: указывая мощность, которую можно получить при завышенных оборотах (например, 5.0 л.с., которую можно достичь при 4500 об/мин), при этом сам двигатель при постоянной работе был настроен на обороты 3600, выдавая всего 3.5 л.с. Численно мощность от оборотов зависит гораздо больше, чем от момента. Надо также понимать, что при завышении оборотов мощность растет, а крутящий момент падает.

Практически это означает, что для косилки, чем больше мощность, тем на большие обороты можно раскрутить нож или на те же обороты, но более длинный/тяжелый нож. Но при этом, если задрать обороты и соответственно уменьшить крутящий момент, то нож сможет преодолевать все меньшее сопротивление. То есть наступает ситуация, что при последующем увеличении оборотов, будет уменьшаться крутящий момент, и двигатель будет раньше глохнуть при увеличении сопротивления (нагрузки) и, значит, хуже будет косить густую траву.

Поэтому с 2010 года чаще всего указывается мощность двигателя, работающего в конкретной технике с учетом ее использования и установленным рабочим числом оборотов. На двигателях же указывается только максимальный крутящий момент, на который и стоит ориентироваться, ведь чем он больше, тем лучше устройство будет справляться со своей задачей.

Все это касается нормальных (брендовых) производителей техники. Сейчас все больше и больше появляется двигателей из Китая, как и от европейских производителей (MTD, Emak, Stiga, Al-Ko и т.д.), так и собственно китайских брендов Zongshen, Loncin, Rato, Lifan и других. Также существует большое количество «заказных» марок сделанных на основе аутсорсинга, то есть владелец бренда заказывает двигатели под собственным названием на заводах в Китае. А тут уже все зависит от добросовестности заказчика/поставщика этих агрегатов. По вашей просьбе и за ваши деньги в Китае вам напечатают любой паспорт и наклейки с любыми цифрами. Поэтому, покупая культиватор/косилку с гордой надписью 7-8 л.с. с китайским мотором, вы можете получить двигатель реальной мощности 4-5 л.с. Но так как в России потребитель в первую очередь выбирает технику по мощности, то наша компания, по возможности, указывает для бензиновой техники с четырехтактными двигателями две мощности: максимальную — завышенная мощность, которую указывали до 2010 года и продолжают указывать некоторые производители/продавцы для увеличения привлекательности своего товара, и номинальную (реальную). Но номинальную мощность, к сожалению, указывают не все производители или указывают завышенную, выдавая ее за номинальную. При этом этот параметр можно замерить только в заводских условиях, поэтому не во всех товарах есть возможность указать данную характеристику.

Также мы рекомендуем в первую очередь обращать внимание на крутящий момент и объем двигателя. Учитывая, что двигатели на садовой технике сконструированы достаточно просто (нет никакого турбо наддува, форсажа и т.д.), то с одного объема невозможно снять больше мощности на 30-50 %

Источник

Типы двигателей

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

  • впуск воздуха или его смеси с топливом;
  • сжатие рабочей смеси,
  • рабочий ход при сгорании рабочей смеси;
  • выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

  • в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
  • в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
  • двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — “тяговиты на низах”).

Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

  • большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
  • большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
  • меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания

Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Мощность двигателя — как работает и что это такое,на что влияет

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении. При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками. В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

Важнейшими характеристиками двигателя являются его мощность, крутящий момент и обороты, при которых эта мощность и крутящий момент достигаются.

Обороты двигателя

Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).

И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:

Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке.

Мощность двигателя

Чем выше мощность, тем большую скорость развивает авто

Мощность — это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.

Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.

Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.

График мощности для дизельного двигателя:

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Что такое киловатты (кВт)

Ватт является принятой в СИ единицей мощности, названной по фамилии изобретателя Дж. Уатта, создавшего универсальную паровую машину. Ватт в качестве единицы мощности приняли в ходе 2-го конгресса научной ассоциации Великобритании в 1889-м. Ранее для расчёта преимущественно использовали лошадиные силы, которые ввёл Дж. Уатт, реже — фут-фунты/мин. 19-я генеральная конференция мер в 1960-м постановила включить Ватт в СИ.

Один из главных параметров любого электрического прибора — мощность, которую он потребляет. По этой причине на каждом электрическом приборе (либо в прилагаемой к нему инструкции) можно прочитать данные о том количестве Ватт, которое требуется для функционирования прибора.

Различают не только механическую мощность. Известны также тепловая мощность и электрическая. 1 Ватт для потока тепла равноценен 1 Ватту механической мощности. 1 Ватт для электрической мощности равноценен 1 Ватту механической и представляет собой по сути мощность постоянного электротока, имеющего силу 1 А, который совершает работу в условиях напряжения 1 В.

Расчет по массе и времени разгона от нуля до сотни

Определить как измеряется мощность двигателя, можно также по общей массе авто и времени его разгона до 100 километров в час. К сожалению, у этого способа есть один крупный недостаток — итоговая формула является достаточно сложной и она может сильно меняться в зависимости от технических особенностей авто (тип привода, характер трансмиссии и так далее).

Поэтому мы Вам рекомендуем производить расчет мощности по массе и времени разгона не вручную, а с помощью готового калькулятора на нашем сайте.

Оптимальный алгоритм действий:

  1. Выполните разгон своего автомобиля от 0 до 100 километров в час. Определите время разгона любым удобным способом (обычно это делается с помощью бортового компьютера).
  2. Узнайте массу своей машины — сделать это можно с помощью все того же бортового компьютера, с помощью технической документации и так далее.
  3. Воспользуйтесь нашим калькулятором — введите массу и время разгона, выберите тип привода, укажите трансмиссию.

Мощность двигателя

Измеряется в «Лошадиных Силах (л.с.)» или Киловаттах (Ваттах, «Вт»), как становится понятно — ей занимался Джеймс Ватт. Да, именно в Ваттах мы измеряем мощность лампочки накаливания у нас в «люстрах» и светильниках, но оказывается и мощность двигателя тоже. Я не буду вдаваться в подробности, как и что он открыл, просто характеристика идет именно от его фамилии.

НО как же лошадиные силы? А все просто, Ватт «тренировался» на лошадях, а именно на переносимых грузах, одной лошадью в единицу времени и на определенное расстояние, так вот после определенных «терзаний» выяснилось — что одна лошадь (если ее заставить генерировать электрический ток, от динамомашины) способна выдавать 736 Ватт в секунду времени, либо 75 кгс м/с, что можно расшифровать так — 75 килограмм, на 1 метр высоты, за 1 секунду времени.

Чтобы перевести «ватты» в «лошадиные силы», существует достаточно большой расчет, но если утрировать, то получается 1кВт=1000Вт=1,36л.с.

Не все производители указывают мощность двигателя в «л.с.», например некоторые немецкие производители указывают именно в Ваттах.

Думаю это понятно, больше к этому возвращаться не будем.

Мощность двигателя внутреннего сгорания (будь то это бензин или дизель), величина не постоянная! ЭТО НУЖНО ПОНИМАТЬ! Меня просто умиляет то, как многие реагируют на эту величину: — у меня 150 л.с., я тебя сделаю как «два пальца», а у оппонента 145 л.с. и по теории он должен проиграть, но не учитывается крутящий момент и расстояние, на котором будут соревноваться автомобили.

Мощность изменяется от оборотов двигателя! Ваша номинальная величина, будет указана при определенных МАКСИМАЛЬНЫХ оборотах, у современных авто, обычно от 5000 до 6500 оборотов. ТО есть простыми словами, 150л.с. – выдаются при 6000 оборотов (для примера). Соответственно при 3000 или при 1500 оборотов, мощность будет уменьшаться в разы.

ТО есть, для того чтобы получить весь «табун» силового агрегата, вам нужно активно «педалировать». Например — при обгонах или резких маневрах, вы должны держать почти вашу «полку» в 5000 – 6500 оборотов именно эти обороты вам помогут резко ускориться. Вот почему зачастую приходится понижать передачу, для того чтобы получить максимум мощности.

НО силовой агрегат не может мгновенно раскрутиться, ему на это нужно время, здесь то и приходит такое понятие как крутящий момент.

Мощные автомобили со всего мира

Не только автолюбители, но и самые производители постоянно спорят между собой, у какой машины больше всего под капотом лошадиных сил. Это своего рода гонка, где каждый пытается доказать своё превосходство.

При максимальном показателе мощности автомашины достигаются невероятные значения ускорения и предельной скорости движения. Но количество лошадиных сил, предусмотренных в автомобиле, должно обязательно идти параллельно с крутящим моментом, возможностями коробки передач и прочности кузова.

В теории даже в обычные Жигули можно установить мотор с самыми высокими значениями лошадиных сил, количество которых превзойдёт параметры в дорогой спортивной машине. Но большая мощность накладывает дополнительные ограничения. Большинство машин, которые обладают запредельными моторами, для дорог общего пользования не предназначены.

Чтобы подобный автомобиль не разорвало на части, его не занесло и не взмыло в воздух, здесь требуется:

  • предусмотреть максимально аэродинамический кузов;
  • использовать специальную тормозную систему;
  • установить высокоэффективную систему охлаждения;
  • обеспечить максимально прочный, но при этом лёгкий кузов;
  • создать идеально работающее рулевое управление;
  • адаптировать топливную систему под особые виды горючего.

Такие автомобили, мощность которых выходит далеко за пределы 500-800 лошадиных сил, выглядят красиво на картинках, на них интересно посмотреть в действии. Но вот о какой-то практичности здесь точно речи не идёт.

Зачем именно создают подобные машины, сказать сложно. Но они есть. И среди них существуют автомобили, которые считаются самыми мощными в мире.

  • Venom GT. Хотя автомобилей с мощностью порядка 1200 лошадиных сил не так мало, в качестве примера можно рассмотреть разработку компании Hennesey. Машина внешне выглядит великолепно, и внутреннее оснащение не лишает водителя многих преимуществ менее мощных, но более комфортабельных авто. Это настоящий гиперкар, модифицированный 8-цилиндровый двигатель которого развивает выдающиеся 1200 лошадок. При этом работает автомобиль на механической коробке передач с 6 ступенями;
  • Производителем этой модели выступает компания Locus. Отличительной особенностью автомобиля является полностью карбоновый кузов. Очень элегантная внешне машина выдаёт 1300 лошадиных сил мощности. Это стало возможным благодаря доработке двигателя V8 с рабочим объёмом 8,2 литра;
  • Ultimate Aero TT. Автомобиль бренда SSC, который несколько превзошёл своего предыдущего конкурента. Это превосходство составляет 50 лошадиных сил, то есть суммарно эта машина выдаёт 1350 л.с. Это двигатель Turbocharger от Chevrolet с объёмом всего 6,4 литра. При этом с места до сотни гиперкар разгоняется за какие-то 2,6 секунды;
  • Когда-то именно Bugatti начала гонку среди автопроизводителей. Но постепенно её Вейрон начал уступать позиции. Потому появилась новая модель, стоимостью около 3 миллионов долларов. При этом под капотом расположился 8-литровый двигатель с парой турбин и 16 цилиндрам. Всё это оборудование помогло выжать 1500 лошадиных сил;
  • Продукт компании Vector, разработанный в США. Всего для модели предлагается две версии силовых установок. Первая не сильно выделяется на фоне предыдущих рассмотренных авто, поскольку имеет 1250 лошадиных сил. Но вторая версия способна выдать уже 1850 лошадок. И это при рабочем объёме двигателя 10 литров и 8 цилиндрах. Причём ради безопасности блок цилиндров изготавливают из настоящего высокопрочного чугуна;
  • Лидером всё же оказался автомобиль от Devel. Это умопомрачительное транспортное средство, поскольку здесь под капотом размещён 16-цилиндровый мотор объёмом 12,3 литра. Это настоящий монстр с 4771 Нм крутящего момента. А мощность здесь составляет сумасшедшие 5000 л.с. Причём двигатель может работать в 3 разных режимах. В самом обычном мощность искусственно снижается до 1200 л.с. Средний режим рассчитан на 2500 л.с., а для выездов на трек можно выжать все 5 тысяч лошадок.

Все эти автомобили были включены в рейтинг не просто так. Существует целый ряд высокомощных автомобилей, которые могут превосходить некоторые рассмотренные машины.

Но особенностью эти авто является тот факт, что они, в отличие от многих других, имеют допуск на дороги общего пользования. То есть на таких автомобилях можно выезжать в город и ездить по обычным дорогам.

Лошадиные силы являются показателем мощности любого автомобильного двигателя. Но эта единица не предопределяет истинные возможности силовой установки. Они формируются из нескольких составляющих, в числе которых лошадиные силы, крутящий момент и прочие параметры.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (), Вт
  • При этом

потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, водите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Подпишись

на наш канал вЯ ндекс.Дзене Еще больше полезных советов в удобном формате

Мощность машины зачастую становится наиболее важным критерием для выбора. Автомобили имеющие большее количество лошадиных сил, быстрее набирают скорость и считаются более эффективными. Данный показатель оказывает влияние и на стоимость авто.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector