Камера сгорания
Содержание:
- Камера — сгорание — двигатель
- Трубчато-кольцевая камера — сгорание
- Размер — камера — сгорание
- Газораспределительный механизм
- Отличия и критерии выбора котлов
- Дизельный двигатель и его принцип действия
- Элементы газотурбинного двигателя. Камера сгорания.
- Управление
- Классификация камер сгорания ГТУ, основные требования к ним
Камера — сгорание — двигатель
Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.
Камеры сгорания двигателей с подвесными клапанами по сравнению с камерами сгорания двигателей с боковыми клапанами и двигателей со смешанным расположением клапанов обладают рядом преимуществ. Эти камеры имеют компактную форму, благодаря чему их относительная поверхность, а следовательно, и потери на охлаждение получаются меньшими, чем в камерах с боковым и смешанным расположением клапанов. Благодаря меньшим сопротивлениям при всасывании ( отсутствие резких поворотов всасываемого потока и относительно слабые его удары о днище поршня, меньшие вихри и меньшие потери на трение смеси о стенки камеры) коэффициент наполнения r v двигателей с подвесными клапанами выше, чем двигателей с боковыми клапанами.
Камеры сгорания двигателей с подвесными клапанами допускают более высокие степени сжатия, что позволяет повысить литровую мощность и экономичность двигателя. Двигатели западноевропейских автомобилей, работающие на бензинах с октановым числом 75 — 85, характеризуются менее высокими степенями сжатия ( 6 5 — 8 5), чем американские двигатели.
Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.
Камеры сгорания двигателей с подвесными клапанами допускают более высокие степени сжатия, что позволяет повысить литровую мощность и экономичность двигателя.
Камера сгорания двигателя имеет наружное охлаждение горючим. Система охлаждения устроена по принципу двух ходов, в соответствии с которым охладитель проходит по одной трубке и возвращается обратно по соседней. Существуют конструкции, в которых используется пористо-регенеративная система, включающая в себя пористую вставку, расположенную от форсуночной головки до линии несколько ниже критического сечения, и трубки регеративного охлаждения.
Камера сгорания двигателя короткая, кольцевого типа, спроектирована специально для работы при большом давлении газа. Она работает бездымно с высокой полнотой сгорания, что достигнуто с помощью хорошего перемешивания топлива и воздуха непосредственно за форсунками и применения завихрителя с увеличенным расходом воздуха через первичную зону. Кроме того, перед фронтовым устройством камеры установлен разделитель потока воздуха, гарантирующий распределение воздуха по наружному и внутреннему кольцевым каналам камеры.
Камера сгорания двигателя — кольцевая, с форсунками испарительного типа, бездымная. В задней части внутреннего корпуса расположен роликовый подшипник турбины высокого давления.
Камера сгорания двигателя — кольцевая, противоточная, с пневматическими форсунками, имеет высокую полноту сгорания в расчетной точке работы двигателя. Камера обеспечивает низкий уровень выделения загрязняющих веществ, работая на обедненной топливовоздушгюй смеси в первичной зоне.
Камера сгорания двигателя — кольцевого типа, очень короткая, с оригинальным смесеобразующим устройством. В этом устройстве топливо через 20 трубок подается в небольшие смесители вихревого типа, где оно предварительно смешивается с поступающим воздухом. Такая конструкция обеспечивает хорошее смешение и полное сгорание топлива на длине камеры менее 255 мм, причем в зоне длиной приблизительно 50 мм происходит смешение, а в остальной части — горение.
Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.
Камера сгорания двигателя кольцевого типа имеет внутреннее пленочное и внешнее конвективное охлаждение. Для получения расчетного поля температур на выходе из камеры применены высокоэффективный диффузор за компрессором и относительно большое число ( тридцать) топливных форсунок.
Конструкция камеры сгорания двигателя существенно влияет на ег о работу по циклу Дизеля — Отто на газе. Наилучшие результаты получаются у однокамерных дизелей, наихудшие-у двигателей с разделенной камерой сгорания и другими теплоаккумулирующими и вихревыми приспособлениями.
Охлаждение камер сгорания двигателей, особенно форсированных, как правило, выполняется жидкостным.
Отсек камер сгорания двигателя газовой турбины включает: сборник камеры сгорания; пламенные трубы; переходные патрубки в сборе; топливные форсунки; запальные свечи; трансформаторы запала; индикаторы пламени; пламеперебросные патрубки; различные элементы материального обеспечения и прокладки.
Трубчато-кольцевая камера — сгорание
Кольцевая камера сгорания. |
Трубчато-кольцевая камера сгорания ( см. рис. 7.17, в) состоит из нескольких пламенных труб, размещенных в общем кольцевом пространстве, по которому проходит вторичный воздух. Для лучшей организации движения воздуха иногда вокруг пламенных труб располагают экраны из тонкого листа. Запальные устройства устанавливают только в части пламенных труб, в остальных трубах поджигание топлива осуществляется передачей пламени через пат-рубки, соединяющие пламенные трубы. Одновременно пламяпере-брасывающие патрубки обеспечивают выравнивание давления между отдельными пламенными трубами.
Трубчато-кольцевая камера сгорания 7 представляет собой воздушный коллектор, в котором устанавливают по семь пламенных труб. Насадки на передней части пламенной трубы помогают разбить главный поток воздуха на отдельные струйки, что необходимо для полного окисления топлива. Такое смешение воздушных потоков позволяет обеспечить равномерное распределение температур по профилям лопаток турбины. Корпус заднего подшипника окружает вал турбины. Он прикреплен к выпускному патрубку компрессора и сопловому аппарату. Камера сгорания установлена вокруг этого патрубка и включает следующие элементы: внутренний теплозащитный экран; пламенные трубы; наружный корпус воздушного коллектора; сопловый аппарат.
Схема ТРД с центробежным компрессором ( ЦБК и трубчатой камерой сгорания. |
Трубчато-кольцевые камеры сгорания представляют собой промежуточный тип камер, сочетающий достоинства и недостатки индивидуальных и кольцевых камер.
Пример расчета трубчато-кольцевой камеры сгорания приведен ниже.
Трубчато-кольцевая камера сгорания / — пламенная труба. 2 — экран. 3 — наружный корпус. 4 — внутренний корпус. |
На рис. 7.19 дана схема трубчато-кольцевой камеры сгорания с экранированными пламенными трубами, выходные участки которых, смыкаясь, образуют кольцевое пространство.
Газотурбинный двигатель выполнен по схеме простого открытого цикла без регенерации тепла выхлопных продуктов сгорания и состоит из осевых компрессоров низкого и высокого давления, трубчато-кольцевой камеры сгорания, турбин высокого и низкого давления и силовой турбины.
Газотурбинный двигатель выполнен по схеме, простого открытого цикла без регенерации тепла выхлопных продуктов сгорания и состоит из осевых ком — прессоров низкого и высокого давления, трубчато-кольцевой камеры сгорания, турбин высокого и низкого давления и силовой турбины.
Недостатком их является неравномерность температур и давлений в окружном направлении перед лопаточным аппаратом турбины. Трубчато-кольцевые камеры сгорания широко применяются в корабельных и судовых ГТД.
Усовершенствованный компрессор низкого давления шестиступенчатый, установлен на одном валу с вентилятором. Семиступенчатый компрессор высокого давления, трубчато-кольцевая камера сгорания и одноступенчатая турбина компрессора в основном аналогичны этим узлам базового двигателя. Турбина вентилятора — трехступенчатая, сконструирована с использованием опыта создания турбины вентилятора ДТРД JT9D и имеет высокий КПД. На двигателе применяется двенадцатилепестковый смеситель потоков, за которым установлено общее нерегулируемое реактивное сопло.
ТРД и ТРДФ имеют умеренные термодинамические параметры: степень повышения давления — 6 — М2 и температуру газа перед турбиной Т 1100 — — 1250 К. В двигателях с невысокими значениями тс для достижения устойчивости работы компрессора в основном используется перепуск воздуха из промежуточных ступеней. Например, в ТРД J85 имеются клапаны перепуска за третьей, четвертой и пятой ступенями компрессора. Например, в ТРД J52 с тг 14 5, несмотря на наличие двухвального компрессора, имеются автоматические клапаны для перепуска воздуха при запуске и выходе двигателя на рабочий режим. Турбины ТРД и ТРДФ имеют от одной до трех ступеней, из них, как правило, первая ступень или ее сопловой аппарат охлаждаемые, как, например, у двигателей J79, Атар 9К, J85, и только у двигателя Олимп 593 охлаждаемые обе ступени турбины. В ТРД и ТРДФ применяются кольцевые и трубчато-кольцевые камеры сгорания.
С этим читают
Размер — камера — сгорание
Система питания дизельного двигателя- Устройство и неисправности
Размеры камеры сгорания должны быть таковы, чтобы смешение и химические реакции успели закончиться до входа в сопло двигателя. Необходимые размеры камеры определяются величиной т — временем пребывания в камере топлива и его продуктов сгорания, которое находится по величине объема продуктов сгорания при температуре горения Т, давлении в двигателе р, объеме камера сгорания V, соотношению pV RT и количеству топлива, сгорающего в 1 сек. Однако нужно иметь в виду, что объем топлива по мере его сгорания в камере возрастает от очень малой величины ( объема жидкого тела) до значения VK, а время пребывания вычисляется по этому большему объему. При увеличении давления время пребывания в камере увеличивается, поэтому камера на том же расходе топлива может быть меньших размеров.
Размеры камеры сгорания должны быть таковы, чтобы смешение и химические реакции успели закончиться до входа в сопло двигателя. Необходимые размеры камеры определяются величиной т времени пребывания в камере топлива и его продуктов сгорания. Время пребывания находится по величине объема продуктов сгорания при температуре горения Th, давлении в двигателе Р, объеме камеры сгорания V /, , соотношению PV — RT и количеству топлива, сгорающего в 1 сек.
Распределение температур в пламенной трубе малой опытной камеры. а — при горелке с плоским регистром. б — при горелке с коническим регистром. |
С увеличением размеров камеры сгорания температура пламенной трубы возрастает. Однако имеющийся опытный материал, касающийся камер сгорания размером около одного метра и более, показывает, что температура пламенной трубы не достигает опасного уровня.
При уменьшении размеров камеры сгорания уменьшаются разрежение, создаваемое горелкой в начале камеры, и количество рецирку-лирующих газов, а последнее при сжигании холодного газа с холодным воздухом ухудшает условия воспламенения и увеличивает отрыв факела от горелки. При очень малом сечении камеры и сжигании холодного газа с холодным воздухом для обеспечения устойчивого горения требуются специальные стабилизаторы воспламенения.
С уменьшением размеров камеры сгорания увеличивается влияние нагрузки на полноту сгорания.
При расчете размеров камер сгорания или при решении обратной задачи — выборе горелок для камер заданных размеров — руководствуются опытными данными работы сходственных установок и интуицией.
Опережение зажигания зависит от размеров камеры сгорания, числа оборотов машины, нагрузки и должно быть определено экспериментально. Для транспортных двигателей, работающих с неременным числом оборотов, предусматривается автоматическое регулирование опережения зажигания.
Скорость выделения тепла непосредственно влияет на размеры камеры сгорания, которые должны быть как можно меньше, чтобы снизить габариты и вес двигателя. Таким образом, задача состоит в достижении высокой интенсивности сгорания при минимальных турбулентности и потерях от неполноты сгорания. Мы располагаем очень малым количеством данных о влиянии различных топлив и их свойств на размеры пламени, хотя исследование этого вопроса ведется и в настоящее время.
Погружная горелка. |
Поэтому он должен свестись к определению размеров камеры сгорания в зависимости от расхода горючей смеси. Чрезвычайно важным элементом расчета является определение длины камеры сгорания как непременное условие для полного сгорания топлива.
Стволы детонационных установок различаются формой и размерами камеры сгорания, местом ввода горючей смеси и порошка, способом и местом инициирования горения горючей смеси, конструктивными особенностями системы охлаждения. Более перспективны конструкции стволов с переменным по длине сечением камеры сгорания.
В работе [ 2J впервые рассмотрено влияние размеров камеры сгорания на среднюю скорость горения. Аналогичные, результаты сравнительно просто получить, используя метод Авери для определения повышения температуры, обусловленного поглощением энергии излучения.
Если ширина зоны горения становится сравнимой с размерами камеры сгорания, то, несмотря на охват пламенем всего объема заряда, горение может затягиваться на значительную часть хода расширения, с соответствующим снижением экономичности цикла. Кроме того, вследствие непосредственного соприкосновения со стенками, резко возрастают скорости теплоотдачи и гибели активных частиц, что может не только снизить скорость горения, но и привести к полному его прекращению.
Степень черноты канала и Пропускательная способность пристеночного слоя для экспоненциальной модели полосы с перекрытыми линиями. |
Газораспределительный механизм
— впускных и выпускных клапанов.
Распределительный вал
Как правило (в современных автомобилях) расположен в верхней части головки цилиндров.
Неотъемлемой частью распредвала являются его кулачки. Их ровно столько, сколько впускных и выпускных клапанов. Эти кулачки надавливая на рычаг толкателя клапана, открывают его, а «сбегая» с рычага, клапан закрывается от действия возвратной пружины.
Клапана
Клапан состоит из плоской шляпки (головки) и стержня. Причем, диаметр головки впускного клапана делают несколько больше, чем диаметр головки выпускного клапана (это делается для лучшего наполнения топливом цилиндров).
Отличия и критерии выбора котлов
Рассмотрев все характеристики открытых и закрытых камер сгорания газового котла можно понять, в чем их различия и подобрать подходящее оборудование. В настоящее время все больше отдают предпочтение агрегатам закрытого типа, отодвигая открытые котлы на второй план. Но если бюджет ограничен, можно подобрать открытый напольный котел в хорошем соотношении цена-качество. Также его рекомендуется выбрать для тех домов, в которых происходят постоянные перебои с электричеством или оно не стабильно.
Закрытые котлы выигрывают в том, что даже в небольшое помещение можно втиснуть отопительное устройство, при этом, не теряя полезной площади.
Если отапливаемое строение не превышает 300 кв. метров и в нем нет проблем с электричеством, отдают предпочтение настенным моделям. В остальных случаях лучше рассматривать напольные модели и дополнительные варианты отопления.
Двухконтурные котлы с закрытой камерой сгорания станут «палочкой-выручалочкой» для квартир в многоэтажке, где отсутствует круглогодичная поставка горячей воды. Однако такие устройства имеют существенный недостаток. В момент обогрева воды, срабатывают клапаны, и прекращается подача теплоносителя в батареи. Если часто пользоваться горячей водой, то есть риск полного остывания радиаторов, что скажется на теплоте в помещении.
Если у вас остались сомнения по поводу выбора газового котла открытого и закрытого типа проконсультируйтесь с специалистом. Он поможет подобрать отопительное устройство, исходя из индивидуальных особенностей вашего жилища.
Дизельный двигатель и его принцип действия
Камера сгорания мотора — это замкнутое место, полость для сжигания газообразного, либо водянистого горючего в движках внутреннего сгорания. В камере сгорания происходит изготовление и сжигание топливовоздушной консистенции.
Вместе с обеспечением рационального смесеобразования камеры сгорания изготавливаются содействовать получению больших экономических характеристик и не плохих пусковых свойств движков. Отталкиваясь от конструкции и применяемого метода смесеобразования камеры сгорания дизелей делятся на две группы:
Неразделенные камеры сгорания представляют из себя единый объем и имеют обычно ординарную форму, которая, обычно, согласуется с направлением, размерами и числом топливных факелов при впрыске. Эти камеры малогабаритны, имеют относительно малую поверхность остывания, поэтому понижаются утраты теплоты. Движки с такими камерами сгорания имеют солидные экономические характеристики и отличные пусковые свойства.
Неразделенные камеры сгорания отличаются огромным многообразием форм. В большинстве случаев они производятся в днище поршней, время от времени отчасти в днище поршня и отчасти в головке блока цилиндров, пореже — в головке.
На рисунке показаны некие конструкции камер сгорания неразделенного типа.
Рис. Камеры сгорания дизелей неразделенного типа: а — тороидальная в поршне; б — полусферическая в поршне и головке цилиндра; в — полусферическая в поршне; г — цилиндрическая в поршне; д — цилиндрическая в поршне с боковым размещением; е — округлая в поршне: ж — шаровая в поршне; з — тороидальная в поршне с горловиной; и — цилиндрическая, образованная днищами поршней и стенами цилиндра; к — вихревая в поршне; л — трапецеидальная в поршне; м — цилиндрическая в головке под выпускным клапаном
Реальная съемка в камере сгорания работающего двигателя
В камерах сгорания, приведенных на рисунке, а—д качество смесеобразования достигается только методом распыления горючего и согласования формы камер с формой факелов впрыска горючего. В данных камерах чаше всего используются форсунки с многодырчатыми распылителями и употребляются высочайшие давления впрыска. Такие камеры имеют малые поверхности остывания. Им свойственна низкая степень сжатия.
Рекомендуем: Зачем нужны загустители масла в двигатель?
Камеры сгорания, показанные на рис. е—з, имеют более развитую теплопередаюшую поверхность, что несколько усугубляет пусковые характеристики мотора. Но методом вытеснения воздуха из надпоршневого места в объем камеры в ходе сжатия удается сделать насыщенные вихревые потоки заряда, способствующими отличному смешиванию горючего с воздухом. При всем этом обеспечивается качество высшего уровня смесеобразования.
Камеры сгорания, показанные на рисунке, к—м, находят применение в многотопливных движках. Им типично наличие строго направленных потоков заряда, обеспечивающих испарение горючего и его введение в зону сгорания в определенной последовательности. Для улучшения рабочего цикла в цилиндрической камере сгорания в головке под выпускным клапаном (рис. м) употребляется высочайшая температура выпускного клапана, являющийся одной из стен камеры.
Разбитые камеры сгорания состоят из 2-ух отдельных объемов, соединяющихся друг с другом одним либо несколькими каналами. Поверхность остывания таких камер существенно не просто, чем у камер неразделенного типа. Потому по причине с большенными теплопотерями движки с разбитыми камерами сгорания имеют обычно худшие экономические и пусковые свойства и, обычно, более высочайшие степени сжатия.
Но при разбитых камерах сгорания путем использования кинетической энергии газов, перетекающих из одной полости в другую, удается обеспечить высококачественное изготовление топливно-воздушной консистенции, по причине этого достигается довольно полное сгорание горючего и устраняется дымление на выпуске.
17. Степень сжатия
Рис. Камеры сгорания дизелей разбитого типа: а — предкамера; б — вихревая камера в головке; в — вихревая камера в блоке
Уже сегодня, дросселирующее действие соединительных каналов разбитых камер позволяет существенно уменьшить «жесткость» работы мотора и понизить критические нагрузки на детали кривошипно-шатунного механизма. Некое понижение «жесткости» работы движков с разбитыми камерами сгорания может также обеспечиваться методом увеличения температуры отдельных частей камер сгорания.
Элементы газотурбинного двигателя. Камера сгорания.
Камеры сгорания ГТД предназначаются для подвода теплоты к рабочему телу в двигателе за счет преобразования химической энергии топлива, запасенного на борту летательного аппарата, в тепловую при его сгорании с участием кислорода, содержащегося в воздухе. Двигатей ли для сверхзвуковых самолетов имеют обычно две камеры сгорания:
основную (перед турбиной) и форсажную (перед соплом), включаемую для увеличения тяги Топливом для современных авиационных ГТД служит керосин.
Существует много марок авиационных керосинов, но все они, являясь продуктами переработки нефти, представляют собой смесь углеводородов, в которой содержится 84…86 % (по массе) углерода (С), 14…16 % водорода (Н) и некоторое (очень малое) количество других веществ.
Но поскольку разведанных запасов нефти хватит, по ориентировочным оценкам только на 40…80 лет‚ в настоящее время ведутся интенсивные исследования по применению в качестве топлива для авиации так называемых криогенных (сжиженных при низких температурах) топлив — жидкого метана (СН4), сжиженного природного газа (СПГ), состоящего примерно на 90 % (80.95% в разных месторождениях) из метана и жидкого водорода (Н2).
По оценкам специалистов запасов природного газа и соответственно метана хватит еще более чем на 100 лет‚ а запасы сырья для получения водорода в природе (из воды) практически не ограничены,
Криогенные топлива имеют еще одно преимущество — значительно больший, чем у керосина, хладоресурс, т‚е‚ возможность эффективного охлаждения (с их использованием) элементов конструкции двигателя и летательного аппарата на больших сверхзвуковых и гиперзвуковых скоростях полёта. При этом, благодаря очень быстрой испаряемоети при случайном попадании из баков в окружаюшую среду, их пожароопасность по некоторым оценкам может быть ниже, чем у керосина.
Управление
Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.
Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.
На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги — педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.
На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.
Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.
Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.
Классификация камер сгорания ГТУ, основные требования к ним
Камера сгорания(КС) – один из самых ответственных и теплонапряженных узлов ГТУ.
В КС совершается процесс подвода тепла к рабочему телу в результате протекания реакции горения топливного газа.
Классификация:
По назначению: основные, резервные, промежуточного подогрева
По принципу действия: переодического и неприрывного действия
По движению рабочего тела: прямоточные и противоточные
По компановки: выносные и встроенные
Конструктивные особенности корпуса и жаровой трубы: трубчатые, кольцевые, трубчато-кольцевые
Требования
· Высокая устойчивость горения во всем диапазоне эксплуатационных режимов работы двигателя без срывов, опасных пульсаций и затухания пламени
· Максимально возможная полнота сгорания (экономичность процесса сгорания)
· Малые габаритные размеры и небольшой вес
· Оптимальный закон распределения температуры газов на выходе из КС во избежание местных перегревов и повреждений сопел и лопаток.
Камера сгорания ГТУ (КС) –
это устройство, предназначенное для сжигания топлива и повышения энергии рабочего тела с целью использования ее в проточной части турбины.
На рис 4.1 приведена схема камеры сгорания ГТУ. Поток воздуха после компрессора, поступающий в КС, разделяется на первичный воздух GВ1 и вторичный – GВ2. Первичный воздух, подаваемый в количестве не менее стехиометрического, служит для полного сгорания топлива, а вторичный – для снижения температуры продуктов сгорания до требуемого уровня. Весь объем камеры сгорания делится на зоны горения и смешения. Рис. 4.1 Конструкция камеры сгорания. Воздухонаправляющее устройство (регистр) I служит для распределения и турбулизации первичного воздуха с целью улучшения смесеобразования для создания условий устойчивого процесса горения. Запальное устройство 2 служит для зажигания топлива в камере сгорания в момент пуска. Горелочное устройство 3 предназначено для подачи топлива в КС и равномерного распределения по объему зоны горения. Пламенная (жаровая) труба 4 служит для ограничения огневого пространства и восприятия тепловых нагрузок. Силовой корпус 5 воспринимает нагрузки внутреннего давления в камере сгорания. Смесители 6 перемешивают вторичный воздух с продуктами сгорания с целью получения на выходе заданного температурного поля. Устойчивое горение топлива в КС обеспечивается следующими факторами: 1) подачей воздуха в количестве, необходимом для создания смеси нужного состава; 2) созданием нужного температурного режима; 3) наличием зоны стабилизации фронта пламени. Для обеспечения необходимого уровня температур и поля скоростей организуется зона обратных токов. 4.2.1. Требования к камерам сгорания и их характеристики Камеры сгорания ГТУ работают в широком диапазоне нагрузок. Они должны иметь малые габариты, массу, быть работоспособным при сжигании различных видов топлива. Кроме того, КС должны обеспечить допустимый уровень вредных выбросов с продуктами сгорания (окислов азота, серы). Особые требования к КС предъявлялся с точки зрения эксплуатационной надежности, так как они находятся в тяжелых температурных условиях. Кроме того, камеры сгорания должны иметь: высокий коэффициент полноты сгорания; малые потери давления; малые габариты, т.е. большую теплонапряженность; заданное поле температур; быстрый и надежный пуск; достаточно большой ресурс; достаточное удобство монтажа и профилактического обслуживания.
Снижение выбросов экологически вредных веществ в выхлопных газах гту