Изохорная теплоёмкость

Таблица удельной теплоемкости пищевых продуктов

В таблице приведены значения средней удельной теплоемкости пищевых продуктов (овощей, фруктов, мяса, рыбы, хлеба, вина и т. д.) в диапазоне температуры 5…20°С и нормальном атмосферном давлении.

Таблица удельной теплоемкости продуктов питания
Продукты C, Дж/(кг·К)
Абрикосы 3770
Ананасы 3684
Апельсины 3730
Арбуз 3940
Баклажаны 3935
Брюква 3810
Ветчина 2140
Вино крепленое 3690
Вино сухое 3750
Виноград 3550
Вишня 3650
Говядина и баранина жирная 2930
Говядина и баранина маложирная 3520
Горох 3684
Грибы свежие 3894
Груши 3680
Дрожжи прессованные 1550…3516
Дыни 3850
Ежевика 3642
Земляника 3684
Зерно пшеничное 1465…1549
Кабачки 3900
Капуста 3940
Картофель 3430
Клубника 3810
Колбасы 1930…2810
Крыжовник 3890
Лимоны 3726
Лук 2638
Макароны не приготовленные 1662
Малина 3480
Мандарины 3770
Маргарин сливочный 2140…3182
Масло анисовое 1846
Масло мятное 2080
Масло сливочное 2890…3100
Масло сливочное топленое 2180
Мед 2300…2428
Молоко сухое 1715…2090
Морковь 3140
Мороженое (при -10С) 2175
Мука 1720
Огурцы 4060
Пастила 2090
Патока 2512…2700
Перец сладкий 3935
Печенье 2170
Помидоры 3980
Пряники 1800…1930
Редис 3970
Рыба жирная 2930
Рыба нежирная 3520
Салат зеленый 4061
Сало топленое 2510
Сахар кусковой 1340
Сахарный песок 720
Свекла 3340
Свинина жирная 260
Свинина нежирная 3010
Слива 3750
Сметана 3010
Смородина черная 3740
Сода 2256
Соль поваренная (2% влажности) 920
Спаржа 3935
Сыр жирный 2430
Творог 3180
Телятина жирная 3180
Телятина нежирная 3520
Тесто заварное 2910
Тыква 3977
Хлеб (корка) 1680
Хлеб (мякиш) 2800
Черешня 3770
Чернослив 3181
Чеснок 3140
Шоколад 2340…2970
Шпинат 3977
Яблоки 3760
Яйцо куриное 3180

Кроме таблиц удельной теплоемкости, вы также можете ознакомиться с подробнейшей таблицей плотности веществ и материалов, которая содержит данные по величине плотности более 500 веществ (металлов, пластика, резины, продуктов, стекла и др.).

  1. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача. Учебник для вузов, изд. 3-е, перераб. и доп. — М.: «Энергия», 1975.
  2. Тепловые свойства металлов и сплавов. Справочник. Лариков Л. Н., Юрченко Ю. Ф. — Киев: Наукова думка, 1985. — 439 с.
  3. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др. Под ред. И. С. Григорьева — М.: Энергоатомиздат, 1991. — 1232 с.
  4. Еремкин А. И., Королева Т. И. Тепловой режим зданий: Учебное пособие. — М.: Издательство ACB, 2000 — 368 с.
  5. Кириллов П. Л., Богословская Г. П. Тепломассобмен в ядерных энергетических установках: Учебник для вузов.
  6. Михеев М. А., Михеева И. М. Основы теплопередачи. Изд. 2-е, стереотип. М.: «Энергия», 1977. — 344 с. с ил.
  7. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  8. Франчук А. У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
  9. Добрынин В. М., Вендельштейн Б. Ю., Кожевников Д. А. Петрофизика: Учеб. для вузов. 2-ое изд. перераб. и доп. под редакцией доктора физико-математических наук Д. А. Кожевникова — М.: ФГУП Издательство «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2004. — 368 с., ил.
  10. В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2005. — 536 с.
  11. Енохович А. С. Справочник по физике. М.: «Просвещение», 1978. — 415 с. с ил.
  12. Строительная теплотехника СНиП II-3-79. Минстрой России — Москва 1995.
  13. Мустафаев Р. А. Теплофизические свойства углеводородов при высоких параметрах состояния. М.: Энергоатомиздат, 1991. — 312 с.
  14. Новиченок Н. Л., Шульман З. П. Теплофизические свойства полимеров. Минск, «Наука и техника» 1971. — 120 с.
  15. Шелудяк Ю. Е., Кашпоров Л. Я. и др. Теплофизические свойства компонентов горючих систем. М., 1992. — 184 с.

Литература

  • Артемов А. В. Физическая химия. — М.: Академия, 2013. — 288 с. — (Бакалавриат). — ISBN 978-5-7695-9550-9.
  •  (недоступная ссылка)
  •  (недоступная ссылка)
  •  (недоступная ссылка)
  • Ипполитов Е. Г., Артемов А. В., Батраков В.В. Физическая химия / Под ред. Е. Г. Ипполитова. — М.: Академия, 2005. — 448 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-1456-6.
  •  (недоступная ссылка)
  • Лифшиц Е. М. // Физическая энциклопедия / Ред. А. М. Прохоров. — М.: Большая Советская Энциклопедия, 1992. — Т. 5. — С. 77–78.
  • Лифшиц Е. М. // Большая советская энциклопедия / Ред. А. М. Прохоров. — 3-е издание. — М.: Большая Советская Энциклопедия, 1976. — Т. 25. — С. 451.
  • Сивухин Д. В. Общий курс физики. — Издание 5-е, исправленное. — М.: Физматлит, 2006. — Т. II. Термодинамика и молекулярная физика. — 544 с. — ISBN 5-9221-0601-5.
  • // Большая российская энциклопедия. — М.: Большая российская энциклопедия, 2016. — Т. 32. — С. 54.

Изопроцессы в газах

Определение 2

Чаще всего рассматриваются два значения теплоемкости газов: 

  • CV являющаяся молярной теплоемкостью в изохорном процессе (V=const);
  • Cp представляющая собой молярную теплоемкость в изобарном процессе (p=const).

При условии постоянного объема газ не совершает работы: A=. Исходя из первого закона термодинамики для 1 моля газа, можно сказать, что справедливым является следующее выражение: 

QV=CV∆T=∆U.

Изменение величины ΔU внутренней энергии газа прямо пропорционально изменению значения ΔT его температуры.

В условиях процесса при постоянном давлении первый закон термодинамики дает такую формулу: 

Qp=∆U+p(V2-V1)=CV∆T+pV.

В котором ΔV является изменением объема 1 моля идеального газа при изменении его температуры на ΔT. Таким образом, можно заявить, что: 

Cp=Qp∆T=CV+p∆V∆T.

Из уравнения состояния идеального газа, записанного для 1 моля, может выражаться отношение ΔVΔT: 

pV=R.

В котором R представляет собой универсальную газовую постоянную. При условии постоянства давления p=const, можно записать следующее:p∆V=R∆T или ∆V∆T=Rp.

Определение 3

Из этого следует, что выражающее связь между молярными теплоемкостями Cp и CVсоотношение имеет вид (формула Майера): 

Cp=CV+R.

В процессе с неизменным давлением молярная теплоемкость Cp газа всегда превышает молярную теплоемкость CV в процессе с не подверженным изменениям объемом, что демонстрируется на рисунке 3.10.1.

Рисунок 3.10.1. Два возможных процесса нагревания газа на ΔT=T2 –T1. При p=const газ совершает работу A=p1(V2 – V1). Поэтому Cp>CV.

Определение 4

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом занимает важное место в термодинамике и обозначается в виде греческой буквы γ. 

γ=CpCV.

Данное отношение включено в формулу для адиабатического процесса.

Между двумя изотермами, обладающими температурами T1 и T2 на диаграмме (p, V) реальны различные варианты перехода. Так как для всех подобных переходов изменение величины температуры ΔT=T2 –T1 является одним и тем же, выходит, что изменение значенияΔU внутренней энергии тоже одинаково. С другой стороны, совершенные при этом работы A и количества теплоты Q, полученные в результате теплообмена, выйдут разными для различных путей перехода. Из этого следует, что газа имеет относительно приближенное к бесконечности число теплоемкостей. Cp и CV представляют собой частные, однако, очень важные для теории газов, значения теплоемкостей.

Рисунок 3.10.2. Модель теплоемкости идеального газа.

Определение 5

Термодинамические процессы, в которых теплоемкость газа не подвергается изменениям, носят название политропических.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Каждый изопроцесс являются политропическим. В изотермическом процессе ΔT=, из-за чего CT=∞. В адиабатическом процессе ΔQ=, выходит, что Cад=.

Замечание 1

Стоит обратить внимание на то, что «теплоемкость» и «количество теплоты» являются крайне неудачными терминами, доставшимися современной науке в качестве наследства теории теплорода, которая господствовала в XVIII веке. Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества

Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода. Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы. По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла

Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества. Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода. Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы. По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла.

Ежедневные примеры

Легко представить себе изохорный процесс, нужно только думать о процессе, который происходит в постоянном объеме; то есть, в котором контейнер, содержащий вещество или материальную систему, не изменяется в объеме.

Примером может служить случай (идеального) газа, заключенного в закрытый контейнер, объем которого не может быть изменен никакими средствами, к которым подводится тепло. Предположим, в случае газа, заключенного в бутылку.

Передача тепла газу, как уже объяснялось, в конечном итоге приведет к увеличению или увеличению его внутренней энергии..

Обратный процесс будет происходить с газом, заключенным в контейнер, объем которого не может быть изменен. Если газ охлаждается и отдает тепло окружающей среде, тогда давление газа будет уменьшаться, а значение внутренней энергии газа будет уменьшаться..

Идеальный цикл Отто

Цикл Отто является идеальным случаем цикла, используемого бензиновыми двигателями. Тем не менее, его первоначальное использование было в машинах, которые использовали природный газ или другое топливо в газообразном состоянии.

В любом случае идеальный цикл Отто является интересным примером изохорного процесса. Это происходит, когда сгорание смеси бензина и воздуха происходит мгновенно в двигателе внутреннего сгорания..

В этом случае происходит повышение температуры и давления газа внутри цилиндра, при этом объем остается постоянным.

Изобарная теплоемкость

Исследование изобарной теплоемкости выполнено методом непосредственного нагрева исследуемого вещества в калориметре переменной температуры с изотермической оболочкой.

Расчет изобарной теплоемкости может быть выполнен тайже и по соотношению с ( dhjdT) p методом конечных разностей. Именно этим методом были рассчитаны значения с приведенные в таблицах.

По изобарной теплоемкости пропилена в указанных выше интервалах параметров получено 10 изотерм.

Исследование изобарной теплоемкости этилена и пропилена выполнено методом непосредственного нагрева исследуемого вещества в калориметре переменной температуры с изотермической оболочкой в интервалах температур соответственно 170 — 280 и 170 — 5 — 360 К при давлениях от атмосферного до 60 бар. Точность экстраполированных значений теплоемкости на кривых насыщения составляет 2 5 — т — 3 % в зоне высоких температур.

Значения изобарной теплоемкости жидкостей на линии насыщения Сре широко используются.

Изотермы теплоемкости р пропилена в жидкой фазе.

Исследование изобарной теплоемкости жидких этилена и пропилена проведено в интервалах температур соответственно 170 — ч — 280 К и 170 — г — 360 К при давлениях от атмосферного до 60 бар.

Различают изохорную и изобарную теплоемкость вещества.

С — изобарная теплоемкость при атмосферном давлении и заданной температуре Т, ккал / кг — С; & СР — поправка на давление, ккал / кг — С.

Номограмма для определения интегрального дроссель-эффекта метана.

Ср — изобарная теплоемкость, ккал / кг-моль — С; / ( D -) — функция, определяемая по графику, представленному на рис. 11.18 в зависимости от рпр и Тпр, ккал / кг-моль — С.

Так, киломольная изобарная теплоемкость окиси титана Г2О3 при 300 и 500 К соответственно равна 97 890 и 138 520 дж кмольГ1 град-1. Теплоемкость жидкостей практически не изменяется при изменении температуры в тех пределах, в которых существует жидкость при обычных давлениях.

Расчетные значения изобарной теплоемкости насыщенной жидкости индивидуальных углеводородов, полученные с использованием уравнений ( I), ( 2), ( 3) хорошо согласуется с шшющиммся экспериментальными данными; расхождения не превышают 2 %, что находится в пределах точности экспериментов. Следовательно, можно утверждатьs что полученные в данной работе зависимости ( уравнения ( 2) и ( 3) не противоречат имеющимся экспериментальным данным.

В частности, изобарная теплоемкость (13.21) в изобарно-изотермическом процессе и изохорная теплоемкость (13.22) в изохорно-изотермическом процессе принимают значения — оо при отводе теплоты и оо при подводе теплоты.

Здесь Ср — изобарная теплоемкость, отнесенная к единице массы.

Краткая теория и методика выполнения работы

Удельной
теплоемкостью

вещества называется величина, равная
количеству теплоты, которую необходимо
сообщить единице массы вещества для
увеличения ее температуры на один градус
Кельвина:

. (4.1)

Теплоемкость
одного моля вещества называется молярной
теплоемкостью
:

, (4.2)

где
m – масса, µ – молярная масса вещества,– число молей газа.

Значение
теплоемкости газов зависит от условий
их нагревания. В соответствии с первым
законом термодинамики количество
теплоты,
сообщенное системе, расходуется на
увеличение ее внутренней энергиии на совершение системой работыпротив внешних сил:

. (4.3)

Изменение
внутренней энергии идеального газа в
случае изменения его температурыравно:

, (4.4)

здесь
– число степеней свободы молекулы газа,
под которым подразумевается число
независимых координат, полностью
определяющих положение молекулы в
пространстве;– универсальная газовая постоянная.

При
расширении газа система совершает
работу:

. (4.5)

Если
газ нагревать при постоянном объеме
(),
тои, согласно (4.3), все полученное газом
количество теплоты расходуется только
на увеличение его внутренней энергии.
Следовательно, учитывая (4.4), молярная
теплоемкость идеального газа при
постоянном объеме будет равна:

. (4.6)

Если
газ нагревать при постоянном давление
(),
то полученное газом количество теплоты
расходуется на увеличение его внутренней
энергиии совершение газом работы:

.

Тогда
молярная теплоемкость идеального газа
при постоянном давлении определяется
следующим образом:

. (4.7)

Используя
уравнение состояния идеального газа
(уравнение Клапейрона–Менделеева),
можно показать, что для одного моля газа
справедливо соотношение:

,

поэтому:

.

Последнее выражение
называют уравнением Майера. Из него,
учитывая (4.6), получаем:

. (4.8)

Отношение
теплоемкостейобозначаюти называют показателем адиабаты или
коэффициентом Пуассона:

. (4.9)

Адиабатным
называется процесс, протекающий в
термоизолированной системе, т.е. без
теплообмена с окружающей средой,.

На
практике он может быть осуществлен в
системе, окруженной теплоизоляционной
оболочкой, но поскольку для теплообмена
необходимо некоторое время, то адиабатным
можно считать также процесс, который
протекает так быстро, что система не
успевает вступить в теплообмен с
окружающей средой.

Первый
закон термодинамики для адиабатного
процесса имеет вид.
Знак минус говорит о том, что при
адиабатном процессе система может
совершать работу только за счет внутренней
энергии. С учетом (4.4)–(4.6) имеем:

. (4.10)

Продифференцировав
уравнение Клапейрона–Менделеева,
получим:

.

Выразим
из негои подставим в формулу (4.10):

.

Выразивиз уравнения Майера и учитывая соотношение
(4.8), получим:

.

Интегрируя
данное дифференциальное уравнение при
условииполучим выражение:

.
(4.11)

Уравнение
(4.11) называется уравнением адиабаты или
уравнением Пуассона.

Метод
определения показателя адиабаты,
предложенный Клеманом и Дезормом (1819
г.), основывается на изучении параметров
некоторой массы газа, переходящей из
одного состояния в другое двумя
последовательными процессами –
адиабатным и изохорным. Эти процессы
на диаграмме–(рис. 4.1) изображены кривыми соответственно
1–2 и 2–3.

Если
в сосуд, соединенный с дифференциальным
датчиком давления, накачать воздух и
подождать до установления теплового
равновесия с окружающей средой, то в
этом начальном состоянии 1 газ имеет
параметры
,,,
причем температура газа в сосуде равна
температуре окружающей среды,
а давлениенемного больше атмосферного.

Если
теперь на короткое время соединить
сосуд с атмосферой, то произойдет
адиабатное расширение воздуха. При этом
воздух в сосуде перейдет в состояние
2, его давление понизится до атмосферного.
Масса воздуха, оставшегося в сосуде,
которая в состоянии 1 занимала часть
объема сосуда, расширяясь, займет весь
объем.
При этом температура воздуха, оставшегося
в сосуде, понизится до.
Поскольку процесс 1–2 – адиабатный, к
нему можно применить уравнение Пуассона
(4.11):

или.

Отсюда:

. (4.12)

После
кратковременного соединения сосуда с
атмосферой охлажденный из-за адиабатного
расширения воздух в сосуде будет
нагреваться (процесс 2–3) до температуры
окружающей средыпри постоянном объеме.
При этом давление в сосуде поднимется
до.

Поскольку
процесс 2–3 – изохорный, к нему можно
применить закон Шарля:

или

. (4.13)

Из уравнений (4.12)
и (4.13) получим:

.

Прологарифмируем
это выражение:

.

Поскольку
избыточные давленияиочень малы по сравнению с атмосферным
давлением,
а также учитывая, что при,
будем иметь:

.

Откуда:

. (4.14)

Избыточные
давленияиизмеряют с помощью дифференциального
датчика давления.

Теплоотдача и терморегуляция

Количество
теплоты Q,
переносимое вследствие теплопро­водности
за время Δt,
определяется формулой

Q=k1ΔTΔSΔt/Δx

где
k1
коэффициент теплопроводности; ΔT/Δx
— градиент тем-

пературы
в направлении, перпендикулярном площадке
ΔS.

Количество
теплоты Q,
переносимое вследствие конвекции за
время Δt,
определяется формулой;

Q=k2(T-T)ΔSΔt

где
k2
— коэффициент теплопередачи при
конвекции; Т и Т
— соответственно
температуры поверхности ΔS
и омываемой среды.

Количество
теплоты Q,
излучаемое за время Δt
абсолютно черным телом, определяется
формулой (закон Стефана — Больцмана)

Q=σT4ΔSΔt

где
σ—
постоянная Стефана — Больцмана; Т
абсолютная температура
тела; ΔS
— площадь излучающей поверхности тела.
Для
реальных физических тел закон Стефана
— Больцмана имеет
вид

Q=k3σT4ΔSΔt

где
k3
— коэффициент, учитывающий, что свойства
поверхности реальных
физических тел отличны от свойств
поверхности абсолютно
черного тела (k3<. k>3=
1.

При
наличии двух встречных потоков радиации
от излу­чающей
поверхности к среде и от среды к
поверхности закон Стефана
— Больцмана имеет вид

Q=k3σ(T4–T4)ΔSΔt

где
Т и Т
— абсолютные температуры тела и
среды; ΔS
— площадь
излучающей поверхности тела.

Длина
волны λт,
которой соответствует максимум
излуча-тельной способности черного
тела, обратно пропорциональна абсолютной
температуре Т (закон смещения Вина):

λm=b/T

где
b
— постоянная закона смещения Вина.

Теплоёмкость идеального газа в изопроцессах

Адиабатический

В адиабатическом процессе теплообмена с окружающей средой не происходит, то есть dQ={\displaystyle dQ=0}. Однако, объём, давление и температура меняются, то есть dT≠{\displaystyle dT\neq 0}.

Следовательно, теплоёмкость идеального газа в адиабатическом процессе равна нулю: C=dT={\displaystyle C={0 \over dT}=0}.

Изотермический

В изотермическом процессе постоянна температура, то есть dT={\displaystyle dT=0}. При изменении объёма газу передаётся (или отбирается) некоторое количество тепла. Следовательно, теплоёмкость идеального газа равна плюс-минус бесконечности: C→±∞{\displaystyle C\to \pm \infty }

Изохорный

В изохорном процессе постоянен объём, то есть δV={\displaystyle \delta V=0} и, следовательно газ не совершает работы. Первое Начало Термодинамики для изохорного процесса имеет вид:

dU=δQ=νCVdT.(1){\displaystyle dU=\delta Q=\nu C_{V}dT.\qquad (1)}

А для идеального газа

dU=i2νRΔT.{\displaystyle dU={\frac {i}{2}}\nu R\Delta T.}

Таким образом,

CV=i2R,{\displaystyle C_{V}={\frac {i}{2}}R,}

где i{\displaystyle i} — число частиц газа.

Другая формула:

CV=Rγ−1,{\displaystyle C_{V}={\frac {R}{\gamma -1}},}

где γ{\displaystyle \gamma } — показатель адиабаты, R{\displaystyle R} — газовая постоянная газа.

Изобарный

Молярная теплоёмкость при постоянном давлении обозначается как Cp{\displaystyle C_{p}}. В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера Cp=Cv+R{\displaystyle C_{p}=C_{v}+R}.
Уравнение Майера вытекает из первого начала термодинамики:

δQ=dU+δA,(2){\displaystyle \delta Q=\mathrm {d} U+\delta A,\qquad (2)}.

В рассматриваемом случае, согласно определению теплоёмкости:

δQ=CpdT,{\displaystyle \delta Q=C_{p}\mathrm {d} T,}

Учитываем, что работа газа равна :

δA=d(pV)=nRdT=pdV+Vdp=pdV,(Vdp=)(3){\displaystyle \delta A=\mathrm {d} (pV)=nR\mathrm {d} T\qquad =p\mathrm {d} V\qquad +V\mathrm {d} p\qquad =p\mathrm {d} V\qquad ,(V\mathrm {d} p\qquad =0)(3)}

Согласно уравнению Менделеева-Клапейрона для одного моля газа:

pdV=RdT.(4){\displaystyle p\mathrm {d} V=R\mathrm {d} T.\qquad (4)}

Подставляя уравнение (4) в (3) получаем:

δA=RdT(5){\displaystyle \delta A=R\mathrm {d} T\qquad (5)}

Так как энергия одной молекулы равна <e>=i2kT{\displaystyle <e>={\frac {i}{2}}kT} (6), то и внутренняя энергия в целом и при изобарном процессе будет определяться по соотношению (1). Следовательно, подставляя уравнения (1) и (5) в (2) получаем соотношение Майера.

Молекулярно-кинетическая теория позволяет вычислить значения молярной теплоёмкости для классического идеального газа газов через значение универсальной газовой постоянной исходя из уравнения (6) и предположения, что молекулы газа не взаимодействуют между собой:

  • для общего случая Cp=i+22R,{\displaystyle C_{p}={\frac {i+2}{2}}R,}
  • для одноатомных газов Cp=52R,{\displaystyle C_{p}={\frac {5}{2}}R,} то есть около 20.8 Дж/(моль·К);
  • для двухатомных газов и многоатомных газов с линейными молекуламиCp=72R,{\displaystyle C_{p}={\frac {7}{2}}R,} то есть около 29.1 Дж/(моль·К);
  • для многоатомных газов с нелинейными молекуламиCp=4R,{\displaystyle C_{p}=4R,} то есть около 33.3 Дж/(моль·К).

Теплоёмкости можно также определить исходя из уравнения Майера, если известен показатель адиабаты, который можно измерить экспериментально (например, с помощью измерения скорости звука в газе или используя метод Клемана — Дезорма).

Теплоёмкость реального газа может значительно отклонятся от теплоёмкости идеального газа. Так при температуре в 25 °С и атмосферном давлении атомарный водород имеет теплоёмкость 2,50R , а атомарный кислород — 2,63R. Также теплоёмкость реального газа зависит от температуры.

Вопросы по теме «Теплоемкость идеального газа»

Вопрос 1. Что такое теплоемкость идеального газа?

Ответ. Когда газу сообщается определенное количество теплоты, меняется его температура.

Вопрос 2. Что такое молярная и удельная теплоемкость идеального газа?

Ответ. Молярная и удельная теплоемкости активно используются в термодинамике. Молярная теплоемкость – это теплоемкость одного моля вещества. 

Удельная теплоемкость – теплоемкость единичной массы вещества.

Вопрос 3. Как определяется теплоемкость газа при изопроцессах?

Ответ. 

При изотермическом процессе T=const. Теплоемкость равна плюс/минус бесконечности.
При адиабатном процессе нет теплообмена с окружающей средой, теплоемкость равна нулю.
При изохорном процессе газ не совершает работы, а теплоемкость равна:

Здесь i – количество степеней свободы молекул газа. Для одноатомных газов i=3, для двухатомных i=5.

При изобарном процессе теплоемкость определяется соотношением Мейера:

Вопрос 4. Как еще связаны теплоемкости при постоянном давлении и постоянном объеме?

Ответ. Отношение теплоемкостей при постоянном давлении и постоянном объеме обозначается греческой буквой «гамма» и называется показателем адиабаты. 

Вопрос 5. Как называются процессы, в которых теплоемкость газа остается неизменной?

Ответ. Такие процессы называются политропными. Адиабатный процесс – частный случай политропного процесса.

Теплоемкость реального газа не равна теплоемкости идеального газа и может сильно отличаться.

Нужна помощь в решении задач и выполнении других заданий? Специальный студенческий сервис готов оказать ее!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector